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a b s t r a c t

In this paper, the smoothed particle hydrodynamics (SPH) method is extended to deal with three-dimen-
sional (3D) non-Newtonian flows with complex free surfaces, in which the viscosity is modeled using the
Cross model. In order to alleviate the so-called tensile instability which leads to particle clustering and
unphysical fracture in fluid stretching, an artificial stress term is particularly incorporated into the
momentum equation. For convenience in implementation of wall boundary condition in 3D, an enhanced
treatment of solid boundaries is proposed to improve the computational performance. Parallelization is
also developed to ensure affordable computational time of simulations involving millions of particles. The
proposed SPH algorithm is validated by solving the Hagen–Poiseuille flow and comparing the SPH results
with the available analytical solutions. To demonstrate the ability of the numerical method in simulating
3D non-Newtonian flows with free surfaces, three challenging engineering applications, including the
impacting droplet, molding injection of a thin plate mold and a Z-shaped mold, and jet buckling, are
investigated. It is found that the shear-thinning behavior can be well displayed in all cases, and the pro-
posed SPH algorithm is stable and fairly accurate and agrees well with the available data.

� 2012 Elsevier B.V. All rights reserved.

1. Introduction

Simulation of free surface flows is an important and active
research field in computational fluid dynamics, where the tradi-
tional grid-based numerical methods are extensively employed,
including finite difference method (FDM), finite volume method
(FVM) and finite element method (FEM). To cope with moving free
surface and large deformation, complicated techniques of captur-
ing and/or tracking the free surface as well as regenerating the
computational grid are generally required, for instance, volume
of fluid (VOF) [1], marker and cell (MAC) [2] and level set (LS) [3]
methods. In the VOF approach, tracking of dynamical interface is
accomplished by solving an additional partial differential equation
for the filled fraction of each control volume. The MAC technique
utilizes marker to track the free surface, while an additional impli-
cit level set function is employed in the LS method.

On the other hand, many particle methods [4,5] have also been
proposed in the Lagrangian framework to deal with the flows with
moving free surface. Actually, particle methods have a variety of
advantages over conventional grid-based methods. It is inherently
suitable for simulating the flows with moving free surface and
large deformation because the evolution of fluid particles can be
readily obtained due to its purely Lagrangian mesh-free nature.
Also, it is comparatively easier in numerical implementation, and

is more straightforward to develop 3D model than grid-based
methods. As a typical particle method, smoothed particle hydrody-
namic (SPH) was first introduced by Lucy [4] and Gingold and
Monaghan [5] in astrophysics to study the collision of galaxies.
Recently, it has been extensively applied in a wide range of re-
search areas, such as free surface flows [6–8], multi-phase flows
[9–11], and non-Newtonian [12–14]. For more information on
the SPH method, we refer the reader to the recent review of the
method by Liu et al. [15].

As for the SPH simulation of non-Newtonian free surface flows, a
two-dimensional (2D) dam-break problem of a Cross fluid was first
investigated by Shao and Lo [16]. The impact of an Oldroyd-B
droplet with a rigid plate was further simulated by Fang et al.
[17], and it was found that an artificial stress term was required
to remove the so-called tensile instability, which results in particle
clustering and unphysical fracture in fluid stretching. With the
employment of pressure Poisson equation to satisfy the incom-
pressibility constraint, Rafiee et al. [18] solved the impacting drop-
let and jet buckling problems. More recently, Vázquez-Quesada and
Ellero [19] simulated the flow of Oldroyd-B liquid around a linear
array of cylinders confined in a channel and compared the dimen-
sionless drag force acting on the cylinder with the available results.
And Hashemi et al. [20] studied the movement of suspended solid
bodies in Oldroyd-B fluid flows using an explicit weakly compress-
ible SPH method.

The research works mentioned above are mainly considered in
2D space, and few 3D SPH simulations of non-Newtonian fluid
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flows have been carried out so far. This might be due to the mas-
sive memory requirement and the huge computational time, since
the number of particles required in 3D is usually too large to be
handled by a single processor. At present, some parallel techniques
of the SPH method have been developed to reduce the computa-
tional cost. Specifically, Moulinec et al. [21] designed a parallel
SPH code called Spartacus-3D to successfully simulate the 3D peri-
odic hill flow and dam breaking flow. Ferrari et al. [22] proposed a
new robust and accurate SPH scheme, and carried out the corre-
sponding parallelization using the message passing interface
(MPI) standard, together with a dynamic load balancing strategy.
Recently, an open source SPH code called JOSEPHINE was devel-
oped by Cherfils et al. [23] to solve unsteady free surface flows.

This paper is directly motivated by the food and cosmetic prod-
uct industries where the materials tend to be shear-thinning but
not necessarily viscoelastic. The so-called shear-thinning effect is
actually a common property of polymer solutions, in which the vis-
cosity decreases with increasing local shear rate. In addition, 3D
SPH simulations would be more significant to practical problems.
Therefore, a parallel version of 3D SPH solver is developed in this
study, and free surface flows of shear-thinning fluids, characterized
by the Cross model, are further investigated. For convenience in
implementation of wall boundary condition in 3D, an enhanced
treatment of solid boundaries is proposed to improve the compu-
tational performance. The artificial stress term presented in
[24,25] is also incorporated into the momentum equation to allevi-
ate the so-called tensile instability. The proposed SPH algorithm is
first validated by solving the Hagen–Poiseuille flow and comparing
the SPH results with the analytical solutions. Then, three challeng-
ing test cases, i.e., the spreading droplet, injection molding of a thin
plate mold and a Z-shaped mold, and jet buckling, are investigated
to demonstrate the ability of the numerical method in simulating
3D non-Newtonian free surface flows. Finally, the paper ends with
some conclusions.

2. Governing equations

In a Lagrangian frame, the governing equations for the flow of
an isothermal, transient, weakly compressible fluid can be written
as

dq
dt
¼ �q

@vb

@xb
; ð1Þ

dva

dt
¼ 1

q
@rab

@xb
þ Fa; ð2Þ

where q is the fluid density, xb is the spatial coordinate, vb is the bth
component of the fluid velocity, and rab is the ða; bÞth component of
the Cauchy stress tensor. The term Fa denotes the ath component of
the acceleration due to external forces. d=dt is the material time
derivative operator, i.e., d=dt ¼ @=@t þ vb@=@xb.

The Cauchy stress tensor in Eq. (2) is decomposed into the or-
dinary isotropic pressure p and the extra-stress tensor sab

rab ¼ �pdab þ sab; ð3Þ

where dab ¼ 1 if a ¼ b and dab ¼ 0 if a–b.

2.1. Rheological models

Both Newtonian and non-Newtonian fluid flows are considered
in this paper, and the popular Cross model is introduced as the rhe-
ological model. The constitutive equation for sab is given by

sab ¼ 2lð _cÞdab
; ð4Þ

where lð _cÞ ¼ qtð _cÞ is the dynamic viscosity, tð _cÞ is the kinematic
viscosity, _c is the local shear rate defined by

_c ¼ ½2trðdac � dcbÞ�1=2 ð5Þ

and dab is the rate-of-deformation tensor given by

dab ¼ 1
2

@va

@xb
þ @v

b

@xa

� �
: ð6Þ

The symbol ‘‘tr’’ denotes the trace of matrix.
The kinematic viscosity tð _cÞ representing the shear-thinning

nature of the fluid is chosen as [26]

tð _cÞ ¼ t1 þ
t0 � t1
ð1þ ðK _cÞmÞ

; ð7Þ

where m, t0, t1 and K are given positive constants. As for the
Newtonian fluid flow, the kinematic viscosity is equivalent to t0,
i.e., K ¼ 0.

2.2. Equation of state

Generally, there are two typical approaches for solving the gov-
erning equations, namely the incompressible SPH [27] and the
weakly compressible SPH [28,29] methods. In the incompressible
SPH method, a pressure Poisson equation is particularly employed
to enforce a divergence-free velocity field, and the fluid pressure is
further evaluated accordingly. However, the pressure in the weakly
compressible SPH algorithm is explicitly calculated from a simple
thermodynamic equation of state. The time-consuming solution
of linear system of equations is avoided in weakly compressible
SPH algorithm, and thus is quite suitable for 3D large-scale SPH
simulations. In this study, we follow the latter approach by using
the following two equations of state [13,30]:

pðqÞ ¼ c2q2=2q0 ð8Þ

and

pðqÞ ¼ c2ðq� q0Þ; ð9Þ

where c is the speed of sound and q0 is the initial fluid density. To
ensure that the artificial compressible flow is sufficiently close to
the behavior of truly incompressible fluid, the Mach number should
be less than 0.1 in practice [13]. Note that Eq. (8) is only applied to
the Hagen–Poiseuille flow in Section 4.1, while for flows with free
surface studied in Sections 4.2-4.4, Eq. (9) is used to obtain almost
zero pressure level on the free surface.

3. Smoothed particles hydrodynamics

3.1. Basic SPH methodology

In the SPH method, the fluid domain X is discretized into a finite
number of particles with associated physical quantities, such as
density, pressure, mass and velocity. The fields of the particle of
interest are determined by relevant information of neighboring
particles within the support domain. An arbitrary function AðrÞ
defined at the position r ¼ ðx; y; zÞ can be expressed by the follow-
ing integral:

hAðrÞi ¼
Z

X
Aðr0ÞWðr� r0; hÞdr0; ð10Þ

where W is the so-called kernel function and h is the smoothing
length. The chosen kernel function should satisfy several conditions,
such as normalization, compact condition, and delta function prop-
erty. In this paper, the popular quintic spline kernel [18] is used for
all simulations.
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