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a b s t r a c t

In this paper a novel variable resolution method using particle splitting and coalescing for the SPH
numerical solution of the Navier–Stokes equations is presented. The key idea of the scheme is to modify
dynamically the particle sizes by means of splitting and coalescing (merging) individual particles to pro-
vide good resolution only where it is needed. The SPH scheme adopted is derived using the variational
principle guaranteeing that both mass and momentum are conserved for particles with different smooth-
ing lengths. A particle shifting procedure is used to prevent unacceptable anisotropic distributions of the
particles and is further generalized for treating domains with variable mass particles. The algorithm has
been tested against analytical solutions for Poiseuille and Taylor–Green flows showing that the shifting
algorithm is effective in increasing the accuracy, and that error introduced by the splitting and coalescing
is negligible. The capability of the numerical scheme for increasing efficiency is shown for more general
problems: the simulations of a moving square in a box and flow past a cylinder have shown that the par-
ticle refinement procedure is able to increase the efficiency while maintaining the same level of accuracy
as a uniform distribution with the most refined resolution.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

In classical Eulerian computational models, adaptive structured
[31] or unstructured grids [19] have been used successfully to pro-
vide variable resolution and to simulate multiscale flows while
retaining computational efficiency. In meshfree numerical
schemes there have been some early attempts to introduce vari-
able resolution by either remeshing, and particle insertion/removal
techniques [3,4,34,17]. Koumoutsakos [16] analysed the capability
of the vortex method to simulate multiscale flows. Recently within
the SPH formalism, dynamic particle refinement which conserves
mass and momentum has been applied to the shallow water equa-
tions [37,35,36]. This has been obtained by particle splitting and
coalescing procedures which can increase and decrease the spatial
resolution and enabling simulations of practical large-scale flood-
ing problems.

The dynamic particle refinement algorithm is developed in this
work for the SPH solution of Navier–Stokes equations introducing a
novel algorithm for merging or coalescing small particles into a lar-
ger particle. Since this procedure requires particles with different

sizes, a consistent SPH discretization scheme which can discretize
accurately the Navier–Stokes equations in the presence of variable
smoothing length is necessary. Bonet and Rodríguez-Paz [2] pro-
posed a momentum-conservative weakly compressible formulation
which takes into account variable smoothing length. However, this
is neither accurate in the presence of a free surface nor computa-
tionally efficient due to multiple sub-iterations required.

A variationally consistent and efficient SPH formulation is here-
in derived to address both of these issues. This scheme assures
momentum conservation in presence of particles with different
smoothing length, and moreover it addresses the efficiency and
accuracy problem highlighted in [2].

Some additional improvement to the formulation in [2] is also
introduced to increase the accuracy of the scheme. In the frame-
work of projection-based incompressible SPH schemes Xu et al.
[38] proposed a particle shifting algorithm which prevents insta-
bilities due to highly disordered particle distributions. In this work
the algorithm is generalized for particles with different masses.

This paper is organized as follows: in Section 2 the variationally
consistent SPH discretization of Navier–Stokes equations is briefly
reported and the particle shifting algorithm is also described, the
complete derivation of the formulation is presented in Appendix
A. In Section 3 the derivation of the particle splitting and coalescing
algorithm is presented. In Section 4 the numerical scheme for
Navier–Stokes equations is tested against analytical solutions of
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Pouseuille and Taylor–Green flow, a moving square in a box and fi-
nally the classical flow past a cylinder at Reynold numbers Re ¼ 20
and Re ¼ 100.

2. Variable resolution SPH algorithm

In this work we follow the classical SPH approach of weak com-
pressibility usually adopted in SPH numerical schemes. Mass and
momentum conservation for a pseudo-compressible fluid, can be
written in Lagrangian form as:

dq
dt
¼ �qr � v ð1Þ

dv
dt
¼ þg � 1

q
rpþ m0r2v ð2Þ

where q is the fluid density, v is the velocity vector, p is the pres-
sure, g is the gravity acceleration and m0 is the kinematic viscosity.

The two equations are coupled by means of the equation of
state:

p ¼ B
q
q0

� �c

� 1
� �

ð3Þ

where c is a constant taken equal to 7 as suggested by different
authors [26,13], q0 is the reference density and B ¼ c2

0q0=c where
c0 is the speed of sound in the fluid. The speed of sound is conve-
niently reduced to obtain a larger computational timestep. In this
work the speed of sound is defined as c0 ¼ 10Umax where Umax is
the maximum expected fluid velocity.

We remark that the smoothing length of a single particle does
not change in time, but different smoothing lengths are created
by the particle splitting and coalescing procedure presented herein,
and hence, must be considered in the SPH discretization of Eqs. (1)
and (2). In the framework of astrophysical simulation where the
density of the fluid can vary enormously, there are different formu-
lations in the literature which take into account particles with dif-
ferent smoothing lengths [14,27]. For incompressible flow Bonet
and Rodríguez-Paz [2] derived the SPH discretization of the Na-
vier–Stokes equations starting from the Euler–Lagrange equation
of motion and using a conventional SPH density summation (intro-
duced later in Section 3). This formulation has the advantage of
ensuring the conservation of momentum, but it is not computa-
tionally efficient because the particle densities need to be updated
before the particle accelerations can be computed. This means that,
to update particle accelerations, two iterations to calculate all par-
ticle interactions are needed. In addition, it is well known that cal-
culating the density by a simple summation for the Navier–Stokes
equations leads to a non-physical drop of the density near a free
surface due to kernel truncation effect. To overcome these issues
a novel formulation for the pressure force term in the momentum
equation, which conserves the momentum and is more computa-
tionally efficient, is presented herein. The key idea is to update
the density by using the SPH discretization of the mass continuity
equation (1) in place of the SPH density summation:

qi ¼
X

j

mjWiðxj;hjÞ ð4Þ

where Wiðxj;hjÞ is the kernel function, mj and hj are the mass and
the smoothing length of the j-th particle.

The SPH discretization of the pressure gradient term is derived
consistently starting from the Euler–Lagrange equation. This en-
sures that:

� the momentum is conserved also in the presence of variable
smoothing length, h.
� the efficiency of the classical SPH formulation such as in [13] is

retained.

The derivation of the formulation is reported in Appendix A, and the
final SPH discretization of Eq. (1) is:

dq
dt
¼ �qi

X
j

mj

qj
ðvj � viÞ � rWjðxi;hjÞ ð5Þ

Note that the smoothing length used in the previous equation is hj,
and not the smoothing length of the i-th particle, hi. This has been
shown to be more accurate in the presence of particle splitting
[35]. The pressure gradient term of Eq. (2) is discretized as follows:

1
q
rp ¼

X
j

mj

qjqi
½pirWjðxi;hjÞ � pjrWiðxj; hiÞ� ð6Þ

Finally, the laminar diffusion term is discretized as reported in [22]:

m0r2v ¼
X

j

mj
4m0rijrWij

qijr
2
ij

" #
vij ð7Þ

where m0 is the kinematic viscosity of the fluid, rij ¼ j xi � xj j,
vij ¼ vi � vj, qij ¼ 0:5ðqi þ qjÞ, and rWij ¼ 0:5½rWjðxi;hjÞþ
rWiðxj;hiÞ�. It is well known that in SPH methods a diffusive term
needs to be added in order to stabilize the numerical scheme
[13]. The most widely used formulation is the artificial viscosity
in the momentum equation proposed by Monaghan [25]. To stabi-
lize the SPH numerical scheme Molteni and Colagrossi [24] pro-
posed an alternative approach which consists of adding a
diffusivity term in the continuity equation; this formulation is
adapted in the present work for particles with different mass and
smoothing length. To include this term the continuity equation
(5) is therefore modified as follows:

dq
dt
¼�qi

X
j

mj

qj
ðvj�viÞ �rWjðxi;hjÞþnhic0

X
j

mj

qj
wijrWjðxi;hjÞ ð8Þ

where n is the artificial density diffusion parameter which has to be
tuned according to the flow characteristics, c0 is the initial speed of
sound and the term wij is defined as:

wij ¼
qj

qi
� 1

� �
xi � xj

r2
ij þ 0:01h2

i

ð9Þ

Recently Xu et al. [38] and Shadloo et al. [32] showed that introduc-
ing a particle shifting correction improves remarkably the accuracy
of both incompressible and weakly compressible SPH schemes and
prevents errors due to irregular particle distributions. Lind et al.
[20] further improved the shifting formulation for free-surface
flows by suggesting a shift correction based on the Fick’s law. The
key idea of the particle shifting is to modify the particle positions,
x, as follows:

dxi

dt
¼ vi þ di ð10Þ

where di is the i-th particle shifting vector. We remark that in the
shifting algorithm used in the present work only the particle posi-
tion xi is modified whereas the particle velocity vi is not modified,
therefore exact momentum conservation is maintained. Alterna-
tively it may be argued that velocity should be interpolated to rep-
resent more accurately the original velocity field [38], while
sacrificing exact momentum conservation. This was in fact tested
but had negligible effect on the results.

In the formulations presented in [38,32] the shifting vector di is
modified according to the anisotropy of the particle distribution.
This is effective if all the particles have the same size, but it has
to be modified if particles with variable mass are used. Herein,
the following formulation for the particle shifting vector is
proposed:
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