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Abstract

In this contribution several staggered schemes used to couple continuum mechanics (CM) and molecular mechanics (MM) are
proposed. The described approaches are based on the atomistic-to-continuum correspondence, obtained by spatial averaging in
the spirit of Irving and Kirkwood, and Noll. Similarities between this and other concurrent coupling schemes are indicated, thus
providing a broad overview of different approaches in the field. The schemes considered here are decomposed into the surface-
type (displacement or traction boundary conditions) and the volume-type. The latter restricts the continuum displacement field
(and possibly its gradient) in some sense to the atomistic (discrete) displacements using Lagrange multipliers. A large-strain CM
formulation incorporating Lagrange multipliers and a strategy to solve the resulting coupled linear system using an iterative solver
is presented.

Finally, the described coupling methods are numerically examined using two examples: uniaxial deformation and a plate with a
hole relaxed under surface tension. Accuracy and convergence rates of each method are reported. It was found that the displacement
(surface) coupling scheme and the Lagrangian (volume) scheme based on either discrete displacements or the H1 norm derived
from continuous displacement fields provide the best performance.
c⃝ 2014 Elsevier B.V. All rights reserved.
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1. Introduction

In recent decades there has been a growth of interest regarding approaches to couple the description of matter at
different scales, namely continuum mechanics (CM), molecular mechanics (MM), and quantum mechanics (QM).
Some approaches couple the description in a sequential manner, that is to say the output from a fine scale is directly
used in a coarse scale. Usually a more challenging approach is to perform concurrent coupling, in which principally
different descriptions are used simultaneously for different parts of the domain. Concurrent coupling methods can
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be categorized by factors [1] such as the continuum model used, the presence or absence of a “handshake” region,
coupling boundary conditions and the governing formulation. Often concurrent methods are tailored for use in a
particular type of problem, such as dynamic zero-temperature problems at both continuum and atomistic sides [2–4]
or a quasi-static continuum with either zero [5–7] or finite [8] temperature atomistic simulations. Very rarely are
concurrent coupling schemes applied to solid amorphous materials [9,10]. Finally, there are methods that bridge
continuum and quantum descriptions [11–14]. For a general overview we refer the reader to [15,16,1].

It is important to note that concurrent methods may require an iterative approach to reach the solution; see for
example the Bridging Scale Method (BSM) [6]. Alternatively, there are methods that are formulated in a monolithic
manner such as the Quasi-Continuum (QC) [17–19], the Bridging Domain Method (BDM) [20] and the Arlequin
method [21,22].

Many of the coupling methods directly or indirectly postulate a procedure to compute continuum fields from
atomistic simulations which are then used to define the total Hamiltonian and/or constraints on primary (displacements
or velocity) fields. In many cases these can be considered as specializations of the theoretical link established by
Irving and Kirkwood [23], and Noll [24]. For example, in [25,26] the authors explicitly use results of the atomistic-to-
continuum correspondence in conjunction with the delta-function as an averaging kernel to calculate cell-integrated
quantities which are then used in the coupling procedure. Monolithic methods which use a handshake interface
between atomistic and continuum domains [21,22,20] require the localization of the potential energy to a spatial
point in order to define the total Hamiltonian for the system.

Although monolithic concurrent coupling schemes such as the QC, BDM or Arlequin methods are, in general,
computationally faster than staggered coupling schemes, there are several reasons why utilizing the latter may be
desirable. First, if one considers a thermo-mechanical quasi-static problem, there is a clear time-scale separation
between the two descriptions. This often leads to a definition of the temperature field in terms of time-averaged
atomistic fluctuations. In such a case there is, it seems, no other choice but to solve the two problems independently
while coupling using staggered approaches. This is partly due to the fact that it is the free-energy which is considered
in CM. This quantity is not immediately available from MM1 and thus blending the two to derive a variational
formulation is not trivial. As an example, one of the extensions of the QC method to finite temperatures [27] effectively
leads to a staggered solution approach. Alternatively, one can construct effective (coarse-grained) thermodynamic
potentials based on the principle of maximum entropy. Using this approach coupling at non-uniform temperatures can
be achieved in a monolithic manner using, for example, another extension of the QC method [28,29].

Staggered schemes may be applied not only to couple MM and CM, but also CM and QM [11,12]. In the latter
case, the principal differences between governing equations2 lead to staggered approaches being widely adopted. Note
that the QM Hamiltonian is defined for the system as a whole, as opposed to the MM Hamiltonian which is attributed
to collections of, at most, four particles.

The blending of CM and MM Hamiltonians is relatively simple when the systems considered on the MM side
consist of two-point (pair) potentials. In such a case the energy attributed to each bond is situated at the geometric
center of particle pairs and is blended with the CM Hamiltonian according to a chosen weighting function. This,
however, becomes much more complicated and not unique for cases when three- and four-point potentials are
considered. To the best of our knowledge, coupling methods based on the blending of Hamiltonians have not been
applied to such cases. Even for pair-potentials, bonds can be weighted in different ways; see the discussion in [20,5]
and the references therein. The issue is principally similar to that of localizing the potential energy of a particle
system in order to obtain the balance of energy in terms of atomistic quantities [30]. One further method to localize
the potential energy for the purpose of coupling atomistic and continuum models is proposed in [5].

Finally, staggered schemes are easier to implement in a non-intrusive fashion when utilizing third-party finite-
element (FE) and molecular dynamics (MD) codes.

Staggered methods do not need to define the total Hamiltonian in order to derive the governing equations for the
system as a whole from a variational principle. Even though this is the case, constraints between the corresponding
kinematic and/or kinetic quantities have to be introduced. In the most simple case, such constraints can be imposed

1 There are a few methods that describe how to obtain the free-energy macroscopically, such as the integration of stresses with respect to the
applied deformation gradient while keeping the temperature fixed.

2 The Kohn–Sham equations of the density functional theory on the QM side lead to a general eigenvalue problem as opposed to the partial
differential equations on the CM side.
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