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a b s t r a c t

We consider a mixed finite element method based on simplicial triangulations for a three-field formula- 
tion of linear elasticity. The three-field formulation is based on three unknowns: displacement, stress and 
strain. In order to obtain an efficient discretization scheme, we use a pair of finite element bases forming 
a biorthogonal system for the strain and stress. The biorthogonality relation allows us to statically con- 
dense out the strain and stress from the saddle-point system leading to a symmetric and positive-definite
system. The strain and stress can be recovered in a post-processing step simply by inverting a diagonal 
matrix. Moreover, we show a uniform convergence of the finite element approximation in the incom- 
pressible limit. Numerical experiments are presented to support the theoretical results.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction 

It is well known that low-order finite elements with quadrilat- 
erals, hexahedr a or simplices constructed from a standard dis- 
placement-b ased formulation of a nearly incompress ible 
elasticity problem exhibit poor performanc e, in the form of poor 
coarse-mesh approximation s and the locking effect, in which they 
do not converge uniformly with respect to the Lamé parameter k.
Some relevant works in a substantial literature on the subject in- 
clude [1,9,11,39].

An important approach for eliminati ng the locking effect is to 
use a mixed method. Mixed formulat ions are generally obtained 
by formulating a saddle-point problem with additional unknown 
variables. The linear elasticity problem can be formulated in mixed 
form in many different ways, see [15,10]. The resulting formulation 
not only provides an approach to alleviating the locking effect, but 
may also be used to compute accurately other variables of interest 
– sometimes called dual variables. These include the stress or pres- 
sure in elasticity, while for the Poisson equation the gradient of the 
solution may be of interest. In standard formulations these addi- 
tional variables have to be obtained a posteriori by differentiation ,
potentially resulting in a loss of accuracy.

One of the most popular mixed formulat ions in elasticity is the 
Hellinger–Reissner formulation , which is based on the stress and 
displacemen t as unknown variables. A stable discretization of the 
stress-di splacement formulat ion of the elasticity problem requires 
the construction of a compatible pair of finite element spaces: one 
for the space of stresses, which are symmetr ic tensor fields, and the 
other for the displacements , which are vector fields. The pair of 
finite element spaces should also be compatib le in the sense that 
they satisfy a suitable inf–sup condition [15,11]. Such a compatible 
stable pair of finite element spaces using polynomial shape func- 
tions was first presented in [4] for triangles and in [2] for rectan- 
gles in the case of plane elasticity. It is interesting to note that 
24 degrees of freedom are needed for the triangula r case and 45 
for the rectangular case. These elements are therefore expensive 
in the two-dimensi onal case, and their use in three-dim ensional 
elasticity would be prohibitive.

Another popular mixed formulation of elasticity used to over- 
come the locking effect is the three-field formulation commonl y
known as the Hu–Washizu formulation [21,43], which was first
introduce d by Fraeijs de Veubeke [18]. In this formulation , the 
unknown variables are displacemen t, stress and strain. The formu- 
lation incorporate s weak statements of the equation of equilib- 
rium, the strain-displace ment equation, and the elasticity 
relation. The Hu–Washizu formulation has been used frequently 
to obtain locking-free methods in linear and non-linear elasticity 
based on bilinear or trilinear finite elements on quadrilateral s or 
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hexahedra [40,39,20,22,23 ,37] . The mathematical analysis for 
well-posedn ess of the Hu–Washizu formulation for nearly-incom- 
pressible elasticity has been investigated in [31], where it has been 
shown that a modified version of of the Hu–Washizu formulation 
is more amenable to obtaining uniform convergence of the finite
element approximation in the nearly incompress ible regime. How- 
ever, the analysis is restricted to a class of quadrilateral meshes.
Many existing methods such as the assumed strain method, as- 
sumed stress method, mixed enhanced method, strain gap method,
B-bar method, etc. have been shown in [16] to be special cases of 
the modified Hu–Washizu formulation .

The objective of this work is to present an extension of the finite
element analysis of the three-field formulation to simplicial triangu- 
lations. We start with the stabilized Hu–Washizu formulation pre- 
sented in [29], where the formulation is used to analyze the 
stability and convergence of the average nodal strain formulation.
In this work we introduce a new discretiza tion based on the use of 
a pair of finite element bases for the stress and strain that form a
biorthogona l system. That is, each component of the strain is discret- 
ized by the standard linear finite element space, whereas the dis- 
crete space of stresses is spanned by basis functions which form a
biorthogona l system with the standard finite element space. The 
biorthogona lity relation is an important component of the formula- 
tion, inasmuch as it allows the strain and stress to be statically con- 
densed out of the system. The static condensation leads to a reduced 
system, which is symmetric and positive-definite. The uniform con- 
vergence of the finite element solution is shown by using an analysis 
similar to that in [29]. However , in contrast to [29], uniform conver- 
gence is shown without assuming the full H2-regularity of the solu- 
tion. Moreover, we prove a priori error estimate for the stress and 
present a set of numerica l results that illustrate the performanc e
and properties of the proposed formulation.

A finite element method using a biorthogona l system for a dis- 
placement–pressure formulation of linear elasticity has been pre- 
sented in [27,28,32]. Although the finite element approximation 
converges uniformly in the nearly incompressible case, stress can- 
not be directly computed in these formulation s.

There are a few publications devoted to the analysis of en- 
hanced strain techniques for simplicia l elements. For example,
the mixed enhanced formulation is extended to simplicia l meshes 
in [42]. However, the formulation in [42] is derived using the mini 
element, requiring that the pressure variable be continuous. Simi- 
lar enhanced strain methods are discussed in [34,5]. Recovering a
displacemen t-based formulation is not so straightforwar d.

The structure of the rest of the paper is as follows. In the next 
section, we fix some notation and briefly recall the standard and 
the mixed formulat ions of linear elasticity. We introduce our finite
element discretization in Section 3. Section 4 is devoted to the 
mathematical analysis of the discrete problem. In this section, we 
show that the finite element approximat ion converge s optimally 
to the true solution without assuming the full H2-regulari ty of 
the solution, and that convergence does not depend on the Lamé
parameter k. This proves that the method does not exhibit locking 
in the nearly incompress ible regime. Section 5 is devoted to a num- 
ber of numerical examples which illustrate the performance of the 
method. Finally, some conclusions are presente d in Section 6.

2. Governing equations and weak formulation 

Vector- and tensor- or matrix-v alued functions will be written 
in boldface form. The scalar product of two tensors or matrices d
and e will be denoted by d : e, and is given by a : b ¼ aijbij, the sum- 
mation convention on repeated indices being invoked.

We start with the boundary value problem of homogen eous and 
isotropic linear elastic body occupying a bounded domain X in

Rd; d 2 f2;3g with Lipschitz boundary C. Let L2ðXÞ be the set of all 
square-inte grable functions in X, and S :¼ fd 2 L2ðXÞd�d :

d is symmetric g is the set of symmetric tensors in X with each 
component being square-integra ble. For a prescribed body force 
f 2 L2ðXÞd, the governing equilibrium equation in X is

�divr ¼ f ð1Þ

with r being the symme tric Cauchy stress tensor.
The strain d is related to the displacemen t through the relation 

d ¼ eðuÞ :¼ 1
2
ðruþ ½ru�tÞ; ð2Þ

in which e is the infinitesimal strain.
Assumin g isotropic linear elastic behavior the constitutive rela- 

tion is given by 

r ¼ Cd :¼ kðtrdÞ1þ 2ld; ð3Þ

where C denotes the fourth-or der elastic ity tensor, 1 is the identity 
tensor, and k and l are the Lamé paramete rs. We assume that the 
body occupying the domain X is homoge neous, and k and l are po- 
sitive constants 1. We focus on the problem of uniform approxima- 
tion of finite element approximati ons in the incompressi ble limit,
which corresponds to k!1. The inverse of (3) is given by 

d ¼ C�1r ¼ 1
2l

r� k
2lþ dk

ðtrrÞ1
� �

:

We assum e that the displace ment satisfies the homogen eous 
Dirichle t boundary condition 

u ¼ 0 on C: ð4Þ

Introduci ng the Sobolev space V :¼ ½H1
0ðXÞ�

d of displacemen ts 
with standard inner product ð�; �Þ1;X, semi-nor m j � j1;X, and norm 
k � k1;X, see, e.g., [13], we define the bilinear form Að�; �Þ and the lin- 
ear functional ‘ð�Þ by

A : V � V ! R; Aðu;vÞ :¼
Z

X
CeðuÞ : eðvÞdx;

‘ : V ! R; ‘ðvÞ :¼
Z

X
f � v dx:

Then the standard weak form of the linear elasticity problem is 
as follows: given ‘ 2 V 0, find u 2 V that satisfies

Aðu;vÞ ¼ ‘ðvÞ; v 2 V : ð5Þ

Here Að�; �Þ is symmetric, continuous, and V-elliptic due to 
Korn’s inequality. Hence standard arguments can be used to show 
that (5) has a unique solution u 2 V . Furthermore, if the domain X
is convex polygonal or polyhedral we have u 2 ½H2ðXÞ�d \ V , and 
there exists a constant C independen t of k such that 

kuk2;X þ kkdivuk1;X 6 Ck‘k0;X: ð6Þ

We refer to [14] for a proof of the a priori estimate (6) for two- 
dimensio nal linear elasticity and [25] for three-dimens ional linear 
elasticity . In order to derive a suitable mixed formulat ion for the 
strain–displacement formulation of linear elasticity, we start with 
the following minimizatio n problem. The variation al formulat ion 
of the linear elastic problem with homogen eous Dirichlet bound- 
ary condition can be written as the following problem:

min
ðu;dÞ 2 V � S

d ¼ �ðuÞ

1
2

Z
X

d : Cddx� ‘ðuÞ: ð7Þ

1 This assumption is somewhat stronger than required for the standard elasticity 
problem where one assumes C to be pointwise stable and hence l > 0 and k > �2=3l.
Our intere st here, however, is the problem of quasi-incompressible ealasticity where 
k!1.
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