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a b s t r a c t

Within the framework of continuum mechanics, the mechanical behaviour of geomaterials is often 
described through rate-independent elastoplas ticity. In this field, the Cam-Clay models are considered 
as the paradigmatic example of hardening plasticity models exhibiting pressure dependence and dila- 
tion-related hardening/softening. Depending on the amount of softening exhibited by the material, the 
equations governing the elastoplastic evolution problem may become ill-posed, leading to either no solu- 
tions or two solution branches (critical and sub-critical softening). Recently, a method was proposed to 
handle subcritical softening in Cam-Clay plasticity through an adaptive viscoplastic regularization for 
the equations of the rate-independent evolution problem. In this work, an algorithm for the numerical 
integrati on of the Cam-Clay model with adaptive viscoplastic regularization is presented, allowing the 
numer ical treatment of stress–strain jumps in the constitutive response of the material. The algorithm 
belongs to the class of implicit return mapping schemes, slightly rearranged to take into account the 
rate-depend ent nature of inelastic deformations. Applications of the algorithm to standard axisymmet ric 
comp ression tests are discussed.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction 

Many granular materials , such as rocks, concrete, dense sands 
and stiff clays, exhibit strain softening when subjected to intense 
shear deformation . This behaviour, which usually manifests itself 
as a macrosco pic loss of strength after a peak load level has been 
reached, may lead to both spatial (strain localization) and time 
(critical softening) discontinuiti es in the response of the material.
The first phenomeno n occurs when deformation s in solids localize 
into narrow bands [40], while critical softening is related to the 
loss of test controlla bility and the onset of snap-back processes 
during displacement controlle d tests [43,17]. In this condition,
jumps in the stress–strain behaviou r of the material occur and 
the response of the material evolves faster than the applied loading 
conditions.

Within the framework of continuum mechanics, the mechanical 
behaviour of geomaterial s is often described through rate-inde- 
pendent elastoplas ticity. In this field, the Cam-Clay family of mod- 
els [32,34,31 ] are considered as the paradigmatic example of 
hardening plasticity models exhibiting pressure dependence and 
dilation-relate d hardening/s oftening. As far as rate-indep endent 

elastoplas ticity is concerne d, both localization and critical soften- 
ing phenomena have been recognized to emerge as local instabili- 
ties in the constitutive equation s, leading to the ill-posednes s of 
the evolution problem and a non-unique ness in the incremen tal 
response of the material.

Strain localization has been widely analyzed in the literature 
both from a mathematical [30,3] and a numerical [21,24] point of 
view. The onset of localization is characterized by the loss of 
hyperboli city of the dynamical equations of motion, resulting in 
the fact that the wave speeds vanish or become imaginary . As a
conseque nce, numerical solutions of localization problems carried 
out by adopting rate-indep endent plasticity models suffer from 
pathologi cal mesh depende nce and length-sc ales effects. Many 
strategie s have been proposed in the literature to model strain- 
softening behaviou r even beyond the onset of localization. Among 
these regularization techniques, viscoplastic ity has been recog- 
nized to provide a valuable framework for the analysis of strain 
localization in solids [21,24,42,29]. One main obstacle in applying 
viscoplas tic regularization techniques to materials exhibiting 
strong softening response is the possible occurrence of time dis- 
continuiti es, which emerge in critical softening conditions.

As pointed out by many authors [23,19,7], the inception of crit- 
ical softening in a strain controlled process corresponds to the 
vanishing of the determinan t of the elastoplasti c compliance 
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matrix or, equivalently , to the vanishing of the so-called plastic
modulus, Kp. In this condition , for a given strain rate _e, the corre- 
sponding stress rate _r goes to infinity and uniqueness of the solu- 
tion for the rate-independent elastoplasti c evolution problem is 
lost. It is worth noting that, in the literature, the plastic modulus 
is always assumed to be strictly positive a priori . This assumpti on,
which ensures the positiveness of the consistency paramete r dur- 
ing a plastic process and the well-pos edness of the rate-indepen- 
dent evolution problem, clearly poses a restriction on the 
allowable amount of material softening that the constituti ve model 
can handle.

Only recently, the possibility to guarante e the well-pos edness 
of the evolution problem even beyond the onset of critical condi- 
tions has been investiga ted, with reference to Cam-Clay plasticity 
[9,12,11]. It was demonstrated that, by adopting a Duvaut–Lions
viscoplastic regularization [15] for the equations of the rate-inde- 
pendent evolution problem, a unique solution exists in the whole 
space of the admissible stress states [10]. The heuristic idea is that,
in the limit as the viscous regularizati on parameter, s, goes to zero,
two different regimes may occur during plastic loading, depending 
on the sign of the plastic modulus. For all initial conditions corre- 
sponding to which the plastic modulus remains positive, and then 
the inviscid equations are well-posed, the viscous solution is con- 
tinuous and tends to the solution of the rate-independ ent problem 
as s! 0. In this regime, which we will refer to as slow dynamics ,
the response of the material takes place at the same time scale at 
which the loading conditions evolve. On the other hand, if the plas- 
tic modulus vanishes or becomes negative, the limit solution for 
the viscoplastic problem is discontinuous. To study the evolution 
of both the stress state and the internal variable along the jump,
i.e. to follow the instantaneo us response of the material to the ap- 
plied deformation , a dilated time s :¼ 1

s t may be used to rescale the 
viscoplastic evolution equations and to compute the state of the 
material at the end of the jump. We will refer to this rescaled evo- 
lution problem as the fast dynamics regime.

In this work we focus on the numerical treatment of time insta- 
bilities related to critical and subcritical softening in Cam-Clay plas- 
ticity models. More specifically, we present an algorithm for the 
numerical integration of the evolution equations of the regularized 
viscoplastic Modified Cam-Clay model [31]. The proposed algorithm 
belongs to the class of implicit return mapping schemes , slightly 
rearranged to take into account the viscous nature of plastic defor- 
mations [37]. Two different strategies have been used to integrate 
the viscous equations in the slow dynamics regime and their re- 
scaled version along the jumps. As far as the slow dynamics is con- 
cerned, the well-conditi oned structure of the adopted algorithm 
allows to recover exactly the return-map ping scheme for the rate- 
independen t problem, in the limit as s! 0. On the other hand, by 
exploiting the mathematical properties of the governing equations,
the same structure is essentially preserved also for the integration in 
the fast dynamics regime. In this case, however, time discontinuities 
(of stress, plastic deformat ions and internal variable) are generated 
in the limit as s! 0. This discussion highlights one of the main dif- 
ferences of our approach with respect to viscoplas tic regularizati on 
schemes already discussed in the literature [21,42]. While in these 
cases the (regularizing) viscous perturba tion is always present, in 
our case it is invoked only when critical softening conditions occur,
and it is switched off otherwise. For this reason, our regularization 
strategy can be described as adaptive.

A comprehens ive description of return mapping strategies for 
the integrati on of both rate-independent and rate-dependen t elas- 
toplastic evolution problems can be found in the literature (see e.g.
[36,13]). A key ingredient in return mapping schemes is the use of 
an operator split strategy for the original evolution problem, lead- 
ing to the so-called closest-point projection approximation [36].
Briefly, the final stress and internal variables are computed from 

an initial trial elastic state by solving the plastic evolution equa- 
tions whenever the plastic constraint is activated. By adopting an 
implicit approximation of the governing equation s, the evolution 
problem is then reduced to a system of non-linear algebraic equa- 
tions, which is solved customarily with a Newton–Raphson itera- 
tive procedure.

As far as the rate-independent problem is concerned, the un- 
knowns to be computed during the integration are the stress (or
elastic strains), the internal variables and the discrete consistency 
paramete r, which can no longer be assumed positive a priori . Just 
as for the continuu m case, well-posedn ess of standard numerica l
algorithms is guaranteed in this case only as long as the discrete 
plastic multiplier is positive.

In the rate-dependen t problem, the stress state can lie outside 
the yield surface during a plastic process and the consisten cy con- 
dition is no longer necessar y. However, by exploiting the varia- 
tional structure of the rate-dependen t Cam-Clay constitutive 
equation s for the slow dynamics regime, it is possible to show that 
an analogous Lagrange multiplier emerges naturally from the cor- 
respondi ng return mapping scheme, see Section 5. Moreover, the 
well-con ditioned structure of the algorithm allows us to show that 
this Lagrange multiplier tends to the rate-independent consistency 
paramete r in the limit as s! 0.

As for the continuum case, jumps in the viscous solution can be 
detected in the numerical algorithm by the sign of the Lagrange 
multiplier : as long as the discrete Lagrange multiplier is positive,
the return mapping scheme for the slow dynamics remains well- 
posed and the viscous solution evolves without discontinuiti es;
on the other hand, if the solution converges to a negative value 
of the Lagrange multiplier during a time step, then a jump occurs 
in the stress–strain response of the material and the equations of 
the fast dynamics have to be integrated to follow the evolution 
of the stress state along the discontinuity; at the end of the jump,
the discrete Lagrange multiplier becomes again positive and the 
solution returns to evolve in slow dynamics conditions.

The paper is organized as follows. After the introduct ion of the 
main notation conventions (Section 2), in Section 3 we recall the 
existence and uniqueness conditions for the solution of the rate- 
independen t elastoplasti c evolution problem. In Section 4 the
Modified Cam Clay model is briefly reviewed and properties of 
the solution for its viscoplastic regularization are outlined. The re- 
turn mapping algorithm we propose for the numerical integration 
of the regularized viscoplastic model is presented in Section 5. Re- 
sults from numerical tests are given in Section 6, where the ability 
of the algorithm to handle instabilities due to strain softening is as- 
sessed by means of a series of single-elem ent tests.

2. Notation 

The usual sign conventi on of soil mechanics (compression posi- 
tive) is adopted througho ut. Following standard notation, bold-face 
letters denote vectors and second-o rder tensors, while blackboard- 
bold symbols denote fourth-order tensors. Accordingly , I and I are
the second-o rder and the fourth-orde r identity tensor respectively .
For any two vectors v;w the scalar product is defined as:
v �w :¼ v iwi, and the dyadic product as: ½v �w�ij :¼ v iwj. Accord- 
ingly, for any two second-order tensors X;Y, X � Y :¼ XijYij and
½X� Y�ijkl :¼ XijYkl. The Euclidean norm of a second order tensor X
is defined as kXk :¼

ffiffiffiffiffiffiffiffiffiffiffi
X � X
p

. For any vector field v;rv denotes the 
spatial gradient of v.

In the representat ion of stress and strain states, the following 
invariant quantities will be used in the paper:

p :¼ 1
3

tr ðrÞ; q :¼
ffiffiffi
3
2

r
ksk; S :¼ sinð3hÞ :¼

ffiffiffi
6
p trðs3Þ
½trðs2Þ�3=2 ð1Þ
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