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Within the framework of continuum mechanics, the mechanical behaviour of geomaterials is often
described through rate-independent elastoplasticity. In this field, the Cam-Clay models are considered
as the paradigmatic example of hardening plasticity models exhibiting pressure dependence and dila-
tion-related hardening/softening. Depending on the amount of softening exhibited by the material, the
equations governing the elastoplastic evolution problem may become ill-posed, leading to either no solu-
tions or two solution branches (critical and sub-critical softening). Recently, a method was proposed to
handle subcritical softening in Cam-Clay plasticity through an adaptive viscoplastic regularization for
the equations of the rate-independent evolution problem. In this work, an algorithm for the numerical
integration of the Cam-Clay model with adaptive viscoplastic regularization is presented, allowing the
numerical treatment of stress-strain jumps in the constitutive response of the material. The algorithm
belongs to the class of implicit return mapping schemes, slightly rearranged to take into account the
rate-dependent nature of inelastic deformations. Applications of the algorithm to standard axisymmetric
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compression tests are discussed.
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1. Introduction

Many granular materials, such as rocks, concrete, dense sands
and stiff clays, exhibit strain softening when subjected to intense
shear deformation. This behaviour, which usually manifests itself
as a macroscopic loss of strength after a peak load level has been
reached, may lead to both spatial (strain localization) and time
(critical softening) discontinuities in the response of the material.
The first phenomenon occurs when deformations in solids localize
into narrow bands [40], while critical softening is related to the
loss of test controllability and the onset of snap-back processes
during displacement controlled tests [43,17]. In this condition,
jumps in the stress-strain behaviour of the material occur and
the response of the material evolves faster than the applied loading
conditions.

Within the framework of continuum mechanics, the mechanical
behaviour of geomaterials is often described through rate-inde-
pendent elastoplasticity. In this field, the Cam-Clay family of mod-
els [32,34,31] are considered as the paradigmatic example of
hardening plasticity models exhibiting pressure dependence and
dilation-related hardening/softening. As far as rate-independent

* Corresponding author.
E-mail address: rconti@sissa.it (R. Conti).

0045-7825/$ - see front matter © 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.cma.2013.02.002

elastoplasticity is concerned, both localization and critical soften-
ing phenomena have been recognized to emerge as local instabili-
ties in the constitutive equations, leading to the ill-posedness of
the evolution problem and a non-uniqueness in the incremental
response of the material.

Strain localization has been widely analyzed in the literature
both from a mathematical [30,3] and a numerical [21,24] point of
view. The onset of localization is characterized by the loss of
hyperbolicity of the dynamical equations of motion, resulting in
the fact that the wave speeds vanish or become imaginary. As a
consequence, numerical solutions of localization problems carried
out by adopting rate-independent plasticity models suffer from
pathological mesh dependence and length-scales effects. Many
strategies have been proposed in the literature to model strain-
softening behaviour even beyond the onset of localization. Among
these regularization techniques, viscoplasticity has been recog-
nized to provide a valuable framework for the analysis of strain
localization in solids [21,24,42,29]. One main obstacle in applying
viscoplastic regularization techniques to materials exhibiting
strong softening response is the possible occurrence of time dis-
continuities, which emerge in critical softening conditions.

As pointed out by many authors [23,19,7], the inception of crit-
ical softening in a strain controlled process corresponds to the
vanishing of the determinant of the elastoplastic compliance
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matrix or, equivalently, to the vanishing of the so-called plastic
modulus, K. In this condition, for a given strain rate &, the corre-
sponding stress rate 6 goes to infinity and uniqueness of the solu-
tion for the rate-independent elastoplastic evolution problem is
lost. It is worth noting that, in the literature, the plastic modulus
is always assumed to be strictly positive a priori. This assumption,
which ensures the positiveness of the consistency parameter dur-
ing a plastic process and the well-posedness of the rate-indepen-
dent evolution problem, clearly poses a restriction on the
allowable amount of material softening that the constitutive model
can handle.

Only recently, the possibility to guarantee the well-posedness
of the evolution problem even beyond the onset of critical condi-
tions has been investigated, with reference to Cam-Clay plasticity
[9,12,11]. It was demonstrated that, by adopting a Duvaut-Lions
viscoplastic regularization [15] for the equations of the rate-inde-
pendent evolution problem, a unique solution exists in the whole
space of the admissible stress states [10]. The heuristic idea is that,
in the limit as the viscous regularization parameter, 7, goes to zero,
two different regimes may occur during plastic loading, depending
on the sign of the plastic modulus. For all initial conditions corre-
sponding to which the plastic modulus remains positive, and then
the inviscid equations are well-posed, the viscous solution is con-
tinuous and tends to the solution of the rate-independent problem
as T — 0. In this regime, which we will refer to as slow dynamics,
the response of the material takes place at the same time scale at
which the loading conditions evolve. On the other hand, if the plas-
tic modulus vanishes or becomes negative, the limit solution for
the viscoplastic problem is discontinuous. To study the evolution
of both the stress state and the internal variable along the jump,
i.e. to follow the instantaneous response of the material to the ap-
plied deformation, a dilated time s := 1t may be used to rescale the
viscoplastic evolution equations and to compute the state of the
material at the end of the jump. We will refer to this rescaled evo-
lution problem as the fast dynamics regime.

In this work we focus on the numerical treatment of time insta-
bilities related to critical and subcritical softening in Cam-Clay plas-
ticity models. More specifically, we present an algorithm for the
numerical integration of the evolution equations of the regularized
viscoplastic Modified Cam-Clay model [31]. The proposed algorithm
belongs to the class of implicit return mapping schemes, slightly
rearranged to take into account the viscous nature of plastic defor-
mations [37]. Two different strategies have been used to integrate
the viscous equations in the slow dynamics regime and their re-
scaled version along the jumps. As far as the slow dynamics is con-
cerned, the well-conditioned structure of the adopted algorithm
allows to recover exactly the return-mapping scheme for the rate-
independent problem, in the limit as T — 0. On the other hand, by
exploiting the mathematical properties of the governing equations,
the same structure is essentially preserved also for the integration in
the fast dynamics regime. In this case, however, time discontinuities
(of stress, plastic deformations and internal variable) are generated
in the limit as T — 0. This discussion highlights one of the main dif-
ferences of our approach with respect to viscoplastic regularization
schemes already discussed in the literature [21,42]. While in these
cases the (regularizing) viscous perturbation is always present, in
our case it is invoked only when critical softening conditions occur,
and it is switched off otherwise. For this reason, our regularization
strategy can be described as adaptive.

A comprehensive description of return mapping strategies for
the integration of both rate-independent and rate-dependent elas-
toplastic evolution problems can be found in the literature (see e.g.
[36,13]). A key ingredient in return mapping schemes is the use of
an operator split strategy for the original evolution problem, lead-
ing to the so-called closest-point projection approximation [36].
Briefly, the final stress and internal variables are computed from

an initial trial elastic state by solving the plastic evolution equa-
tions whenever the plastic constraint is activated. By adopting an
implicit approximation of the governing equations, the evolution
problem is then reduced to a system of non-linear algebraic equa-
tions, which is solved customarily with a Newton-Raphson itera-
tive procedure.

As far as the rate-independent problem is concerned, the un-
knowns to be computed during the integration are the stress (or
elastic strains), the internal variables and the discrete consistency
parameter, which can no longer be assumed positive a priori. Just
as for the continuum case, well-posedness of standard numerical
algorithms is guaranteed in this case only as long as the discrete
plastic multiplier is positive.

In the rate-dependent problem, the stress state can lie outside
the yield surface during a plastic process and the consistency con-
dition is no longer necessary. However, by exploiting the varia-
tional structure of the rate-dependent Cam-Clay constitutive
equations for the slow dynamics regime, it is possible to show that
an analogous Lagrange multiplier emerges naturally from the cor-
responding return mapping scheme, see Section 5. Moreover, the
well-conditioned structure of the algorithm allows us to show that
this Lagrange multiplier tends to the rate-independent consistency
parameter in the limit as 7 — 0.

As for the continuum case, jumps in the viscous solution can be
detected in the numerical algorithm by the sign of the Lagrange
multiplier: as long as the discrete Lagrange multiplier is positive,
the return mapping scheme for the slow dynamics remains well-
posed and the viscous solution evolves without discontinuities;
on the other hand, if the solution converges to a negative value
of the Lagrange multiplier during a time step, then a jump occurs
in the stress-strain response of the material and the equations of
the fast dynamics have to be integrated to follow the evolution
of the stress state along the discontinuity; at the end of the jump,
the discrete Lagrange multiplier becomes again positive and the
solution returns to evolve in slow dynamics conditions.

The paper is organized as follows. After the introduction of the
main notation conventions (Section 2), in Section 3 we recall the
existence and uniqueness conditions for the solution of the rate-
independent elastoplastic evolution problem. In Section 4 the
Modified Cam Clay model is briefly reviewed and properties of
the solution for its viscoplastic regularization are outlined. The re-
turn mapping algorithm we propose for the numerical integration
of the regularized viscoplastic model is presented in Section 5. Re-
sults from numerical tests are given in Section 6, where the ability
of the algorithm to handle instabilities due to strain softening is as-
sessed by means of a series of single-element tests.

2. Notation

The usual sign convention of soil mechanics (compression posi-
tive) is adopted throughout. Following standard notation, bold-face
letters denote vectors and second-order tensors, while blackboard-
bold symbols denote fourth-order tensors. Accordingly, I and [ are
the second-order and the fourth-order identity tensor respectively.
For any two vectors v,w the scalar product is defined as:
v-w := 7;w;, and the dyadic product as: [v @ w]; := v;w;. Accord-
ingly, for any two second-order tensors X,Y, X-Y :=X;Y; and
[X ® Y]y := X;jYu. The Euclidean norm of a second order tensor X
is defined as ||X]|| := vX- X. For any vector field v, Vv denotes the
spatial gradient of v.

In the representation of stress and strain states, the following
invariant quantities will be used in the paper:

p:= %tr(a); q:= \/glls\l; S :=sin(30) := \/67“(53) (1)

[tr(s?)*/2
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