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h  i g  h  l  i g  h  t  s

• The  presence  of insoluble  surfactant
changes the  type of  instability  by
heating from  below.

• By  heating  from  above,  the  region  of
oscillatory  instability  is diminished
by the  surfactant.

• The  high-frequency  prediction  for  the
critical  number  is valid  only  for  very
large G.

g  r  a  p  h  i c  a  l  a  b  s  t  r  a  c  t

The  onset  of  surface-tension  driven  convection  in  a heated  liquid  layer  with  insoluble  surfactant  adsorbed
on  the  free surface  is analyzed  in  the  framework  of  the  linear  stability  theory.  The  limit  of  a  deep  layer  is
considered.  The  general  dispersion  relation  is  obtained  and  investigated  analytically  and  numerically.
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1. Introduction

Onset of surface-tension driven convection in a viscous liquid
under the action of thermal gradient is a paradigmatic example
of oscillatory pattern formation in a nonequilibrium system [1].
Generally, the most typical mechanisms that produce an oscilla-
tory instability of a motionless state are the mode mixing and the
negative feedback with delay (“overstability”).
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A striking example of the oscillatory instability caused by mode
mixing is the generation of waves by heating from above,  discov-
ered by Levchenko and Chernyakov [2] and thoroughly explored
by Velarde and collaborators [3–5]. The origin of that instability
is the linear mixing between two kinds of waves, (i) transverse
(capillary-gravity) waves caused by a joint action of gravity and
surface tension and (ii) longitudinal (dilational) waves driven by
the gradient of surface-tension [6–8].

As an example of an oscillatory instability caused by negative
feedback, one can mention instability in a viscous liquid film
heated from below in presence of an insoluble surfactant [9–11].
Because of the advection of the surfactant by the liquid motion, the
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Fig. 1. Sketch of the problem geometry.

surfactant concentration decreases in the regions with divergent
surface flow and increases in the regions with convergent flow. The
tangential stresses driven by the surface tension inhomogeneity,
that are directed opposite to the liquid motion, provide negative
feedback that suppresses a monotonic instability but can lead to
an oscillatory instability.

In the present paper, we investigate the onset of the Marangoni
convection in the presence of an insoluble surfactant at the inter-
face in the case of a “deep” layer, with the thickness large with
respect to the capillary length. In Section 2, the problem is formu-
lated, and the dispersion relation for waves is derived. In Section 3
we treat dilational waves generated by heating from below. In Sec-
tion 4, the influence of the surfactant on the instability caused by
mode mixing, is studied. Section 5 contains concluding remarks.

2. Formulation of the problem

We  consider an incompressible Newtonian liquid that occupies
a semi-infinite region − ∞ < x < ∞,  − ∞ < z < �(x, t) . Since we restrict
ourselves to the linear stability of the system, it is sufficient to
consider a two-dimensional problem. The free surface z = �(x, t) is
covered by insoluble surfactant with concentration �(x, t). The liq-
uid is subjected to a vertical temperature gradient −A (positive A
for heating from below and negative A for heating from above), see
Fig. 1. The surface tension � of the liquid linearly depends on the
temperature of the liquid T and on the surfactant concentration �,

� = �0 − �1(T − T0) − �2(� − �0), (1)

where �1 =− ∂T�, �2 =− ∂��, whereas �0, T0 and �0 are, respec-
tively, some reference values of surface tension, temperature, and
surfactant concentration.

Conservation of momentum, mass and energy results in the fol-
lowing governing equations:

vt + (v · ∇)v = −∇p

�
+ �∇2v + g, (2)

∇ · v = 0, (3)

Tt + (v · ∇)T = �∇2T; (4)

−∞ < x < ∞,  −∞ < z < �(x, t). (5)

Here t is the time, v = (u, 0, w) is the velocity field, � is the density
of the liquid, p is the difference between the local pressure and the
atmospheric one, � and � are, respectively, kinematic viscosity and
thermal diffusivity.

The distribution of the surfactant surface concentration � on the
free surface z = �(x, t) is governed by the following equation:

�t − �t(ez · ∇s)� + ∇s · (v	�) + (∇s · n)(v · n)� = D∇2
s �, (6)

where ∇s = ∇ − n(n · ∇), n = (−�x, 1)(1 + �2
x )

−1/2
is the unit vector

normal to the interface, v	 = v − (v · n)n is the tangential component
of velocity, D is the surface diffusivity coefficient, and ez = (0, 1) is
a unit vector directed upwards. The first two terms in (6) charac-
terize the temporal change of the surfactant concentration along

the normal to the surface z = �(x, t) [12]. The third term describes
advection of the surfactant by the surface flow. A change of the cur-
vature radius results in variation of the surface area, which, in turn,
alters the surface concentration. This effect is captured by the last
term on the left side of (6) [13,14].

To close the system we  require the balance of the normal and the
tangential stresses, as well as the kinematic boundary condition:

z = �(x, t) : −p  + 2
n · D  · n + 2H� = 0, (7)

2
n · D  · t = ∇� · t, (8)

�t + u�x = w. (9)

Here 
 = �� is the viscosity, D  is the deviatoric stress tensor, H
is the mean interfacial curvature, � is the surface tension, t =
(1, �x)(1 + �2

x )
−1/2

is the unit tangential vector. We  neglect the dila-
tional and shear viscosities of the surface.

The basic state corresponding to the quiescent fluid is

ub = wb = 0, �b = 0, �b = �0, pb = −�gz, Tb = −Az + T0.

(10)

We  study the stability of that state with respect to infinitesimal
disturbances

u = ub + ũ, w = wb + w̃, � = �b + �̃, � = �b + �̃,

p = pb + p̃, T = Tb + �̃.

The governing equations for the disturbances are linearized
around the base state (tildes are omitted):

ut = −px

�
+ �(uxx + uzz), (11)

wt = −pz

�
+ �(wxx + wzz), (12)

ux + wz = 0, (13)

�t − Aw = �(�xx + �zz). (14)

Linearizing the boundary condition on the free surface we
obtain,

z = 0 : �t = w,  (15)

−p + �g� + 2
wz = ��xx, (16)


(uz + wx) = −�1(�x − A�x) − �2�x, (17)

�t + �bux = D�xx, (18)

�z = 0. (19)

Disturbances are located near the upper free surface and decay
downwards, i.e.

u, w, � → 0 at z → −∞. (20)

We rewrite system (11)–(20) in the non-dimensional form using
the following scales: the capillary length, lc = (�/�g)1/2, is taken as
a unit of length, l2c /� as a time unit, �/lc as a velocity unit, ���/l2c
as a unit of pressure, Alc as a unit of temperature, and �0 as a scale
of the surfactant concentration. We  arrive at the following system
of equations and boundary conditions:

ux + wz = 0, (21)

P−1ut = −px + uxx + uzz, (22)

P−1wt = −pz + wxx + wzz, (23)

�t − w = �xx + �zz (24)
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