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A B S T R A C T

Using the moment analysis method and the Green’s function, mathematical formulations valid across the full-
time scale have been derived to determine dynamic dispersion coefficients for passive and reactive particles
flowing in a circular tube with fully-developed laminar flow under different source conditions. The newly
proposed formulations were verified through agreements with both analytical solutions and random walk
particle tracking (RWPT) simulations. The relationship between particle size and dispersion coefficient for
passive particles varies with time and they are positively correlated if Peclet number is larger than its critical
value; otherwise, they are negatively correlated. Furthermore, the critical Peclet number decreases as time
increases. Compared to an instantaneous point source, the critical Peclet number for a volumetric planar source
is much smaller. At a small size ratio, size-exclusion effects on passive particle dispersion can be neglected across
the full-time scale for both instantaneous point and volumetric planar sources; whereas, at a large size ratio, its
significance needs to be considered, depending upon time and source condition. Using Dre_diff = 0.02 (Dre_diff =
(D−Dnon_ad)/D, where D and Dnon_add are dispersion coefficients with and without axial diffusion, respectively)
as the critical value, axial-diffusion effects on dispersion are negligible for passive solutes at long times if Peclet
number is not smaller than 50; however, due to size exclusion this is not applicable for passive particles. At early
times, reaction rate, center-of-mass velocity, and dispersion coefficient are not sensitive to Damköhler number
for reactive particles. At long times, reaction rate and enter-of-mass velocity increases in magnitude as the
Damköhler number increases, while the dispersion coefficient decreases with increasing Damköhler number.
Consequently, reaction at the tube walls greatly affects concentration distributions.

1. Introduction

Quantification and understanding of dispersion behaviour of solutes
and particles in porous media are of significance in various applications
including enhancing oil recovery, assessing environment risk, and
performing chromatography analysis [1–3]. Mathematical models at
microscopic and macroscopic scales describe solute and particle trans-
port in porous media. Compared to a microscopic model, a macroscopic
model is simpler and more convenient; however, it fails to provide
insight into intrinsic controlling factors and fundamental mechanisms
[4,5]. Pore network models, where the porous medium is represented
by the interconnected pores and tubes, have been widely used to
characterize fluid flow in porous media [4,6–8]. On the other hand, the
tube-bundle model, which assumes the porous medium to be an
assemblage of tubes, is also widely used for describing fluid flow in
porous media [2,9]. Consequently, it is important to quantify such
dispersion problems in a circular tube, which serve as the foundation to
quantify solute and particle transport phenomena in porous media.

Since Taylor’s pioneering work [10], numerous efforts have been
made to quantify dispersion of passive (i.e., nonreactive) solutes in a
fully-developed laminar tube flow [11–18]. Although the contribution
of axial diffusion to solute dispersion was neglected in Taylor’s original
work [10], it was subsequently considered by Aris [11]. Ananthakrish-
nan et al. [13] numerically showed that axial diffusion is important
when Peclet number (N vR D= /Pe m, where v is the average flow
velocity, R is the tube radius; and Dm is the molecular diffusion
coefficient) is less than about 50; and at low NPe, its significance varies,
depending upon dimensionless time (t t τ=D , where t is the elapsed
time and τ R D= 2

m). Compared to passive solutes, few attempts have
been extended to determine dispersion coefficients of passive particles
flowing in a circular tube, although solutes and particles disperse
differently [19–22]. Considering the size-exclusion effects of particles,
James and Chrysikopoulos [23] proposed a mathematical model to
quantify the asymptotic dispersion process of passive particles flowing
in a circular tube.

The moment analysis method proposed by Aris [11] has been widely
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used to describe transport behaviour because the concentration mo-
ments can provide information about concentration evolution. The first
three moments respectively relating to the conservation of injected
mass, effective displacement, and solute dispersion are usually used to
describe the distribution of transverse average concentration with the
aid of the Taylor dispersion model [24]. Regarding reactive solutes
flowing in a circular tube, Sankarasubramanian and Gill [25] developed
a dispersion model including the effects of first-order irreversible
reaction at the walls. Due to the complexity of the problem, however,
only asymptotic expressions for the reaction rate (K0), center-of-mass
velocity (vc), and dispersion coefficient (D) were derived. Using the
Chatwin’s expansion method [14], Barton [26] extended the results of
Sankarasubramanian and Gill [25] to derive more exact asymptotic
expressions for K0, vc, and D, showing good agreements with numerical
results. Assuming that mass flux at the walls depends linearly upon
concentration at earlier times, Purnama [27] extended Taylor’s theory
to determine D for reactive solutes after sufficiently long times.
Considering first-order irreversible reaction at the walls, Das and
Mazumder [28] described the temporal evolution of D for reactive
solutes using numerical solutions. Taking both reversible and irrever-
sible first-order reactions at the walls into account, Ng and Rudraiah
[29] derived asymptotic equations for K0, vc, and D. Considering
continuity of concentration and mass flux as boundary conditions,
Dejam et al. [30] developed an asymptotic equation for D. Incorporat-
ing the effects of London, Van der Waals, viscous, and Debye double
layer forces, Brenner and Gaydos [31] proposed theoretical formula-
tions to calculate vc and D for reactive particles following in a circular
tube after sufficiently long times. So far, no attempt has been made to
determine dispersion coefficients for passive particles flowing in a
circular tube across the full-time scale under different source condi-
tions, and the effects of particle size and axial diffusion remain
unknown. In addition, it is desired to not only develop analytical

equations to determine K0, vc, and D for reactive particles flowing in
a circular tube across the full-time scale, but also examine the effects
of the aforementioned three parameters on particle concentration
distribution.

In this study, mathematical formulations have been developed to
determine dynamic dispersion coefficients for passive particles flowing
in a circular tube under fully-developed laminar flow subject to
different source conditions. The effects of particle size and axial
diffusion on passive particle dispersion have been thoroughly exam-
ined. For reactive particles, the first-order irreversible reaction is
considered to derive analytical equations for K0, vc, and D across the
full-time scale. The modified Taylor dispersion model proposed by
Sankarasubramanian and Gill [25] is used to examine the effects of K0,
vi, and D on particle concentration distributions. The local moment
analysis method and Green’s function are employed, while random
walk particle tracking (RWPT) algorithm is used to verify the newly
derived formulations.

2. Theoretical formulations

Fig. 1 shows schematic diagrams for passive and reactive particles
transport in a circular tube with semi-infinite length. In this study, the
effects of size-exclusion are considered to differentiate solute and
particle dispersion, thus the widely adopted assumptions for solute
dispersion are considered. Mathematical formulations are derived
based on the following assumptions: (1) flow is axisymmetric, fully-
developed, and laminar; (2) dispersion is isothermal; (3) molecular
diffusion is independent of concentration [10–13,15,17,18,32–36]; (4)
particles are neutrally buoyant and travel at their centroid velocity; (5)
no reactions for passive particles [20,22,23]; and (6) first-order
irreversible reaction occurs between reactive particles and tube walls.

Nomenclature

Notation

c Solute concentration, M/L3

c0 Initially injected solute concentration, M/L3

cm Transverse average concentration, M/L3

Cn The nth local axial moments
dp Particle diameter, L
dp_crit Critical particle diameter, L
dtube Tube diameter, L
D Dispersion coefficient, L2/t
Dm Molecular diffusion coefficient, L2/t
Dno Dispersion coefficient without size-exclusion effect, L2/t
Dnon_ad Dispersion coefficient without axial diffusion, L2/t
Dre_diff Relative difference in dispersion coefficient with and

without axial diffusion Dre diff = (D−Dnon ad)/D
Jn The nth order Bessel function of the first kind
k Boltzman’s constant, ML2/t2/T
ks Irreversible absorption rate, L/t
K0 Reaction rate, 1/t
mn The nth global moments
NPe Peclet number (N vR D=Pe m), dimensionless
NPe_crit Critical Peclet number, dimensionless
r Radial distance from the tube centerline, L
rd Size ratio of tube diameter and particle diameter

(r d d=d p tube), dimensionless
rd Radial distance from the tube centerline

(r r R d= ( − 0.5 )d p , dimensionless
r′ Radial distance of injection location from the tube center-

line, L
R Tube radius, L
t Elapsed time, t
Δt Time step, t
tD Dimensionless time t t τ=D
T Absolute temperature, T
v Flow velocity, L/t
vc Center-of-mass velocity, L/t
vmax Maximum flow velocity, L/t
v Average flow velocity, L/t
x Coordinate parallel to the tube wall as shown in Fig. 1, L
X ∫X t v t t( ) = ( )d

t

0 c as shown in Eq. (11), L
y Coordinate perpendicular to the tube walls as shown in

Fig. 1, L
z Coordinate perpendicular to the tube walls as shown in

Fig. 1, L

Greek letters

αn Roots of J1(an) = 0 or α J α βJ α( ) − ( ) = 0n 1 n 0 n , dimension-
less

β Damköhler number, dimensionless
δ Dirac delta function, dimensionless
ζ ∫ζ t K t t( ) = ( )d

t

0 0 as shown in Eq. (11), dimensionless
η Fluid dynamic viscosity, Ft/L2

ξ ∫ξ t D t t( ) = ( )d
t

0
as shown in Eqn. (11), L2

ρ Normalized density function, dimensionless
τ Critical time τ R d D= ( − 0.5 )p

2
m, t
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