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a b s t r a c t

The stochastic collocation method has recently received much attention for solving partial differential
equations posed with uncertainty, i.e., where coefficients in the differential operator, boundary terms
or right-hand sides are random fields. Recent work has led to the formulation of an adaptive collocation
method that is capable of accurately approximating functions with discontinuities and steep gradients.
These methods, however, usually depend on an assumption that the random variables involved in
expressing the uncertainty are independent with marginal probability distributions that are known
explicitly. In this work we combine the adaptive collocation technique with kernel density estimation
to approximate the statistics of the solution when the joint distribution of the random variables is
unknown.

� 2012 Elsevier B.V. All rights reserved.

1. Problem statement

Let ðX;R; PÞ be a complete probability space with sample space
X, r-algebra R � 2X and probability measure P : R! ½0;1�. Let
D � Rd be a d-dimensional bounded domain with boundary @D.
We investigate partial differential equations (PDEs) of the form

Lðx;x; uÞ ¼ f ðxÞ; 8x 2 D; x 2 X

Bðx;x; uÞ ¼ gðxÞ; 8x 2 @D; x 2 X:
ð1:1Þ

Here L is a partial differential operator with boundary operator B,
both of which can depend on the random parameter x. As a conse-
quence of the Doob–Dynkin lemma, it follows that u is also a ran-
dom field, dependent on both the spatial location x and the event
x. In order to work numerically with the expressions in (1.1), we
must first represent the operators in terms of a finite number of
random variables n ¼ ½n1; n2; . . . ; nM �T . This is often accomplished
using a truncated Karhunen–Loève (KL) expansion [17]. If we de-
note C ¼ ImageðnÞ, then we can write (1.1) as

Lðx; n; uÞ ¼ f ðxÞ; 8x 2 D; n 2 C

Bðx; n; uÞ ¼ gðxÞ; 8x 2 @D; n 2 C:
ð1:2Þ

For a given realization of the random vector n, the system (1.2) is a
deterministic partial differential equation that can be solved using a
deterministic solver. Throughout this paper we assume that

D;L;B; f , and g are defined so that the above problem (1.2) is well
posed for all values of n 2 C. In this paper we will explore several
different sampling methods for solving the system (1.2).

One is typically interested in methods that allow statistical
properties of u to be computed. If qðnÞ denotes the joint probability
density function of the random vector n, then the kth moment of
the solution u is defined as

EðukÞ ¼
Z

C
ukqðnÞdn: ð1:3Þ

One may also be interested in computing probability distributions
associated with u, for example Pðuðx; nÞP cÞ.

Several methods have been developed for computing approxi-
mations to the random field u and the associated statistical quan-
tities. The most widely known is the Monte–Carlo method, where
the desired statistics are obtained by repeatedly sampling the dis-
tribution of n, solving each of the resulting deterministic PDEs, and
then estimating the desired quantities by averaging. Recently,
much attention has been paid to alternative approaches such as
the stochastic Galerkin and stochastic sparse grid collocation
methods [2,9,12,22,21,27]. These methods typically approximate
the solution u as a high-degree multivariate polynomial in n. If this
approximation is denoted upðx; nÞ, then the error u� up can be
measured in terms of an augmented Sobolev norm

k � kL2
P ;V ¼

Z
X
k � k2

V dP
� �1

2

: ð1:4Þ

Here V is an appropriate Sobolev space that depends on the spatial
component of the problem and k � kV is the norm over this space. It
can be shown that as the total degree of the polynomial approxima-
tion is increased, the error in the above norm, ku� upkL2

P ;V , decays
very rapidly provided that the solution u is sufficiently smooth in
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n [22]. If u is not sufficiently smooth then the convergence of these
methods can stall or they may not converge at all [18]. Several
methods have been proposed for treating problems that are discon-
tinuous in the stochastic space. One approach partitions the sto-
chastic space into elements and approximates the solution locally
within elements by polynomials, continuous on the domain
[3,25]. Another approach is to use a hierarchical basis method
developed in [16], which approximates u using a hierarchical basis
of piecewise linear functions defined on a sparse grid. This idea was
used with stochastic collocation in [18] where the sparse grid is re-
fined adaptively using an a posteriori error estimator.

If the truncated Karhunen–Loève expansion is used to express L
and B, then the random variables n1; n2; . . . ; nM have zero mean and
are uncorrelated [17]. It is frequently assumed that the random
variables are independent and that their marginal density functions
qiðniÞ are known explicitly. In this case the joint density function is
simply the product of the marginal densities qðnÞ ¼ PM

k¼1qiðniÞ. This
assumption simplifies the evaluation of the moments of the solu-
tion since the multidimensional integral in (1.3) can be written as
the product of one-dimensional integrals. It is not the case, how-
ever, that uncorrelated random variables are necessarily indepen-
dent, and in the worst case the support of the product of the
marginal densities may contain points that are not in the support
of the true joint density. Thus, it may not be appropriate to define
the joint density function as the product of the marginal density
functions. See [13] for further discussion of this point. In this paper
we explore a method for approximating the statistics of the solution
u when an explicit form of the joint distribution is not available and
we only have access to a finite number of samples of the random
vector n. In particular, we are able to treat the case where informa-
tion on the parameters of the problem is only available in the form
of experimental data. The method works by constructing an
approximation q̂ðnÞ to the joint probability distribution qðnÞ using
kernel density estimations [23]. This construction is then combined
with an adaptive collocation strategy similar to the one derived in
[18] to compute an approximation to the random field u. Moments
can then be efficiently evaluated by integrating this approximation
with respect to the approximate probability measure q̂ðnÞ.

The remainder of this paper proceeds as follows. Section 2 dis-
cusses the adaptive collocation method in [18]. Section 3 presents
an overview of the kernel density estimation technique used for
approximating the unknown distribution of n. Section 4 presents
the method developed in this paper for approximating solutions
to problems of the form (1.2). An error bound for the method is gi-
ven in Section 4.1, and Section 4.2 presents techniques for extract-
ing solution statistics. Section 5 presents the results of numerical
experiments showing the performance of the new method and
comparing this performance with that of the Monte Carlo method.
Finally in Section 6 we draw some conclusions.

2. The adaptive collocation method

Collocation methods work by solving the Eq. (1.2) for a finite
number of pre-determined parameters fnð1Þ; . . . ; nðNcÞg using a suit-
able deterministic solver. The solutions at each sample point are
then used to construct an interpolant to the solution for arbitrary
choices of the random vector n. We denote such an approximation
generally asAðuÞðnÞ. Collocation methods were first used for solving
PDEs with random coefficients in [2]. The interpolant was formed
using a Lagrangian polynomial basis defined on tensor product grids.
The cardinality of these grids is exponential in the dimension of the
random vector so that this method is not viable for problems with
high-dimensional random inputs. Sparse grid collocation methods
were developed in [27] and an error analysis of the method was
presented in [22]. These methods use the Smolyak interpolation

formula [24] to construct a high-order polynomial interpolant using
many fewer points than the full tensor grid. A refinement of this
method for problems where the solution depends on the parameters
in an anisotropic manner was presented in [21]. For all of these
methods, the solution random field is expressed globally as a poly-
nomial in the random vector n. These methods are therefore only
useful when the random field u is sufficiently regular in n.

An adaptive collocation method was developed in [18]. This meth-
od is designed to compute approximations of random fields that pos-
sess discontinuities or strong gradients, and for which the image setC
is bounded.1 In the following, we present an overview of this method
and our proposed modifications. To simplify the presentation we de-
scribe the case of a function u defined by a single random parameter
whose image is a subset of [0,1]. This can be generalized in a straight-
forward manner to a function defined by M parameters with image con-
tained in any M-dimensional hypercube. Define

mi ¼
1 if i ¼ 1;
2i�1 þ 1 if i > 1;

�
ð2:1Þ

ni
j ¼

j�1
mi�1 for j ¼ 1; . . . ;mi; if mi > 1;

0:5 for j ¼ 1; if mi ¼ 1:

(
ð2:2Þ

For i ¼ 1;2; . . ., we have that hi ¼ fni
jg

mi
j¼1 consists of mi distinct

equally spaced points on ½0;1�. We also have that hi � hiþ1. Since
these points are equidistant, the use of global polynomial interpola-
tion as in [27] is not appropriate due to the Runge phenomenon. We
make no assumptions on the smoothness of u; for example, it may
contain singularities that global polynomial approximations will
not resolve. To address these issues, a hierarchical basis of piece-
wise linear functions is used to construct the interpolant. Define
h0 ¼ ; and Dhi ¼ hi n hi�1. Note that jDhij ¼ mi �mi�1. Let the mem-
bers of Dhi be denoted fnDi

j g
jDhi j�1
j¼0 . The hierarchical basis is defined

on the interval ½0;1� as

a1
0ðnÞ ¼ 1 ð2:3Þ

ai
jðnÞ ¼

1� ðmi � 1Þjn� nDi
j j if jn� nDi

j j < 1=ðmi � 1Þ;
0 otherwise;

(
ð2:4Þ

for i > 1 and j ¼ 0; . . . ; jDhij � 1; see Fig. 2.1. These functions are
piecewise linear and have the property that ai

jðn
Di
k Þ ¼ djk, and

ai
jðn

s
kÞ ¼ 0 for all s < i. Note that there is a binary tree structure on

the nodes in hi. That is, we can define the set of children of a point
nDi

j as

childðnDi
j Þ ¼

fnDiþ1
j g if i ¼ 2

fnDiþ1
2j ; nDiþ1

2jþ1g otherwise:

(
ð2:5Þ

We also denote the parent of a point in this tree as parðnDi
j Þ.

Algorithm 1 defines an interpolation scheme using the hierar-
chical basis functions.

Algorithm 1. Interpolation with hierarchical basis functions

Define A0ðuÞðnÞ ¼ 0.
Define k ¼ 1
repeat

Construct Dhk

Evaluate uðnDk
j Þ 8nDk

j 2 Dhk

wk
j ¼ uðnDk

j Þ � Ak�1ðuÞðnDk
j Þ 8nDk

j 2 Dhk

Define AkðuÞðnÞ ¼
Pk

i¼1
PjDhi j�1

j¼0 wi
ja

i
jðnÞ.

k ¼ kþ 1
until maxðjwk�1

j jÞ < s

1 For unbounded C, interpolation is carried out on a bounded subset of C, see e.g.
[26].
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