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a b s t r a c t

A robust and efficient integration method, named quadratically consistent one-point (QC1) scheme,
which evaluates the Galerkin weak form only at the centers of background triangle elements (cells) is
proposed for meshfree methods using quadratic basis. The strain at the evaluation points is approximated
by corrected (smoothed) nodal derivatives which are determined by a discrete form of the divergence
theorem between nodal shape functions and their derivatives in Taylor’s expansion. We prove that such
smoothed nodal derivatives also meet the differentiation of the approximation consistency (DAC). The
same Taylor’s expansion is applied to the weak form and the smoothed nodal derivatives are used to
compute the stiffness matrix. The proposed QC1 scheme can pass both the linear and the quadratic patch
tests exactly in a numerical sense. Several examples are provided to demonstrate its better numerical
performance in terms of convergence, accuracy, efficiency and stability over other one-point integration
methods in the meshfree literature, especially its superiority over the existing linearly consistent one-
point (LC1) quadratures.

� 2012 Elsevier B.V. All rights reserved.

1. Introduction

One-point quadrature with hourglass controls [1–5] provides
tremendous benefit in 2D/3D finite element analysis of engineering
problems, since it uses minimum evaluations of the weak form and
at the same time removes the spurious zero-energy modes. In con-
trast, full quadratures generally require 4 and 8 integration points
for 2D quadrilateral and 3D hexahedral elements, respectively. The
computational savings of one-point quadrature are remarkable,
especially for non-linear problems. In addition, it can be applied
to nearly incompressible materials while the full quadratures can-
not due to their volumetric locking [4,5]. Actually, the benefit of
one-point quadrature is not limited to the above. For example, in
the crack analysis by the extended finite element method (XFEM)
[6,7], one-point quadrature provides significant convenience in
cutting elements since it avoids the dilemma when some quadra-
ture points in one element satisfy the fracture criterion whereas
the others do not [8,9]. Due to these reasons, one-point quadrature
is widely used in finite elements and is already available in many
commercial softwares, e.g. ABAQUS [10] and LS-DYNA [11].

On the other hand, meshfree Galerkin methods [12,13] devel-
oped in the past twenty years show considerable advantages
against the traditional finite element methods, e.g. in large

deformation analysis [14] and in adaptive computations [15].
However, accurate integration of the Galerkin weak form in mesh-
free methods is more difficult than in finite element methods due
to the non-polynomial character of meshfree approximations as
well as the misalignment between the nodal supports and the inte-
gration cells [16]. To ensure a stable solution, higher order Gauss
integration is commonly employed in meshfree Galerkin methods,
e.g. 4 � 4 Gauss quadrature for background quadrilaterals is sug-
gested in [12]. This kind of method is very costly and, more impor-
tantly, it fails to pass the patch tests exactly as shown in [17].

Several strategies were developed in the literature to accelerate
meshfree computations such as the stress-point methods [18–20]
and the support integration methods [21–24]. As in finite element
methods mentioned above, it is crucial to develop stable and effi-
cient one-point quadrature for meshfree Galerkin methods and
many efforts have been devoted to this field. It is noted that one-
point quadrature in meshfree literature is usually formulated as
nodal integrations in which the evaluation points and the approx-
imation nodes coincide. In essence, nodal integration is one-point
quadrature since in each background integration cell only one
point, i.e. the node associated to this cell, is used to evaluate the
weak form.

Beissel and Belytschko [25] first proposed a nodal integration
method with least-square stabilization, in which the square of
the residual of the equilibrium equation is introduced to the weak
form as a stabilization mechanism to remove spurious singular
modes. However, the magnitude of such stabilization term is
dependent on a numerical parameter and its proper choice is
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required. Otherwise, the results will be over diffusive or oscillated.
Nagashima [26] developed a nodal integration scheme for ele-
ment-free Galerkin (EFG) method by using a Taylor’s expansion
technique which is first introduced by Liu et al. in finite element
method [27] and in reproducing kernel particle method (RKPM)
[28] as well. In this kind of stabilization, Taylor’s expansion of
the stiffness matrix is employed such that the high order terms
as stabilization are introduced in a rational manner and no numer-
ical parameter is involved. This technique was also used by Liu
et al. [29] to stabilize the nodal integration in radial point interpo-
lation method (RPIM) and more high order terms are retained.
However, Duan and Belytschko [20] showed that Taylor’s expan-
sion based stabilization (TEBS) is not adequate for nodal integra-
tion of the EFG method with quadratic approximations and
therefore considerable oscillations present in the resulting stress
fields. Convergence in displacement is also lost for fine discretiza-
tions. In addition, no paper reports its performance in patch tests
which are very important for convergence in a practical sense.
Bonet and Kulasegaram [30], in the context of corrected smooth
particle hydrodynamics (CSPH), proposed a nodal integration
method with an integration correction which enables the method
to pass linear patch test. However, the method still requires a sim-
ilar least-square stabilization as in [25] and the integration correc-
tion needs to be solved in an iterative manner.

Chen et al., in an important work with very high citations [31],
proposed a stabilized conforming nodal integration (SCNI) method
and strain smoothing is used for stabilization. They showed that
the strain smoothing meets the integration constraint (IC) which
is essentially the discrete form of the linear patch test condition.
So, SCNI can provide even better accuracy than Gauss integration
which does not meet the IC, i.e. fails to pass linear patch test ex-
actly. However, as pointed out by Duan et al. in [17], the smoothed
strain evaluated at the center of each background integration cell
can only reproduce a constant strain field in the cell. Consequently,
this kind of one-point quadrature can only provide accuracies and
convergence comparable to linear finite elements even if a qua-
dratic approximation is employed. In addition, mild oscillations
are observed in stress fields and such spurious instabilities get
worse if non-constant body forces present.

As described above, one-point quadrature in meshfree Galerkin
methods always appears as a nodal integration scheme. One of the
main reasons is, in such a way, the methods are more ‘‘truly-mesh-
less’’ like since only one set of nodes is used. However, the deter-
mination of the nodal weights for integration usually requires a
‘‘mesh’’ for the domain, e.g. the Voronoi diagram used in [31].

In this study, we will develop a robust and efficient one-point
quadrature for meshfree Galerkin methods with quadratic approx-
imations. The key feature of the proposed method is that it can
reproduce a linear strain field which is consistent to the quadratic
approximation for the displacement using only one point in each
integration cell. Background triangle cells (elements) are used
and only their centers are taken as evaluation points. The stabiliza-
tion comes from correcting the derivatives of the nodal shape func-
tions at the quadrature points according to the consistency
framework for the nodal derivatives proposed in [17], which in-
cludes the differentiation of approximation consistency (DAC)
and the discrete divergence consistency (DDC). The corrected
(smoothed) nodal derivatives are computed by the satisfaction of
the quadratic DDC. The idea of this paper is the introduction of
the Taylor’s expansion as in [26] into the quadratic DDC such that
this consistency can be satisfied by using only one point in each
integration cell. In contrast, three points per cell are employed in
[17] to enforce this condition. We further prove that the smoothed
derivatives also meet the quadratic DAC and therefore the
proposed method is a quadratically consistent one-point (QC1)
integration scheme which is the key contribution of this paper.

In contrast, the SCNI [31] only meets the linear DDC and does
not satisfy the quadratic one. Therefore, this kind of method in this
study is named as linearly consistent one-point (LC1) integration
scheme. It is noted that the hourglass controls [1–5] were devel-
oped for low-order elements and also only provide a linear accu-
racy. To our knowledge, the proposed QC1 is the first one-point
quadrature for meshfree methods with quadratic exactness, i.e. it
can pass quadratic patch test exactly.

The paper is organized as follows. The EFG method is briefly re-
viewed in Section 2. The consistency framework for the nodal
derivatives proposed in [17] is described in Section 3. The proposed
one-point quadrature QC1 is presented in Section 4. Its quadratic
consistency is proved in Section 5 followed by the numerical exam-
ples in Section 6 and conclusions in Section 7.

2. Element-free Galerkin (EFG) method

In EFG method, the nodal shape functions NI(x) are constructed
by the moving least-squares (MLS) approximation which origi-
nates in data fitting. Here, we follow the generalization of MLS in
[32], which can accelerate the computations of the nodal shape
functions and their derivatives. The nodal shape functions NI(x)
can be given by

NIðxÞ ¼ pTðXIÞwIðxÞaðxÞ ð1Þ

where wI(x) is a weight function which is positive and compactly
supported. In this study, we consider the following weight:

wIðxÞ ¼ wð�sÞ ¼ 1:0� 15�s4 þ 24�s5 � 10�s6 for �s 6 1;
0; for �s > 1;

(
ð2Þ

where �s ¼ s=r, r is the radius of the support, s = |x - XI| the distance
from the sampling point x to the node XI . In this study, upper case X
is used to denote the approximation node, whereas lower case x is
used to denote an arbitrary point and in most cases it denotes the
evaluation point.

p(x) in Eq. (1) is a vector of base functions which usually in-
cludes a complete basis of the polynomials with a given order. Note
that the weight function given in Eq. (2) is C2 with respect to x and
y, which is required by the proposed method QC1 as shown in Sec-
tion 4. The quartic spline used in [17] is only C1 since its second-or-
der spatial derivatives with respect to x and y are singular at the
node, i.e. at �s ¼ 0, and cannot be used in QC1.

The unknown vector a(x) in Eq. (1) is computed by the repro-
ducibility condition which requires that the MLS approximation
reproduces exactly the polynomial basis p(x), i.e.

pðxÞ ¼
X

I

pðXIÞNIðxÞ ð3Þ

Substitution of Eq. (1) into the above equation gives

AðxÞaðxÞ ¼ pðxÞ ð4Þ

where

AðxÞ ¼
X

I

pðXIÞpTðXIÞwIðxÞ ð5Þ

Thus, the nodal MLS shape functions NI(x) can be computed by
Eq. (1) after solving Eq. (4) for the unknown vector a(x) .

The standard derivatives of the shape function NI,i(x) are com-
puted by directly differentiating Eq. (1)

NI;iðxÞ ¼ pTðXIÞ½wI;iðxÞaðxÞ þwIðxÞa;iðxÞ� ð6Þ

where the unknown a,i(x) is obtained by directly differentiating
Eq. (4)

AðxÞa;iðxÞ ¼ p;iðxÞ � A;iðxÞaðxÞ ð7Þ
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