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a b s t r a c t

Magnetic materials have been finding increasingly wider areas of application in industry ranging from
magnetic cores of transformers, motors, generators to recording devices and components in magneto-
strictive actuators and sensors. We focus here on the continuum modeling of such materials, which have
an inherent coupling between the magnetic and mechanical characteristics. This coupling results from
the existence and rearrangement of microstructural domains with uniform magnetization. The under-
standing and efficient simulation of these highly nonlinear and dissipative mechanisms, which occur
on the microscale, is an important challenge of the current research. We present a rate-type incremental
variational principle for a dissipative micro-magneto-elastic model. It describes the quasi-static evolution
of both magnetic as well as mechanically driven magnetic domains, which also incorporates the surrounding
free space. The model incorporates characteristic size-effects that are observed and reported in the liter-
ature. The associated Euler equations arising from the variational principle for the coupled problem are
shown to be consistent with the Landau–Lifschitz equation, containing the damping term of the Landau–
Lifschitz–Gilbert equation that describes the time evolution of the magnetization. A particular challenge
is the algorithmic preservation of the geometric constraint on the magnetization director field, that
remains constant in magnitude. We propose a novel finite element formulation for the monolithic treat-
ment of the variational-based symmetric three-field problem, considering the mechanical displacement,
the magnetization director, and the magnetic potential induced by the magnetization as the primary
fields. Here, the geometric property of the magnetization director is exactly preserved pointwise by non-
linear rotational updates at the nodes. Numerical simulations treat domain wall motions for magnetic
field- and stress-driven loading processes, including the extension of the magnetic potential into the free
space.

� 2012 Elsevier B.V. All rights reserved.

1. Introduction

The phenomenon of ferromagnetism in solids is characterized
on the macroscopic level by a local magnetization that remains
even after a complete withdrawal of the applied magnetic field
and the stresses. At the microscale level, ferromagnetic materials
are composed of several homogeneously magnetized regions,
called magnetic domains, whose evolution in time is driven by
external magnetic fields and stresses applied to a sample of the
material. This causes the characteristic ‘butterfly’ field-induced
strain and ferromagnetic hysteresis curves on the macroscale. It
is this property of dissipative magnetostriction, that ferromagnetic
materials exhibit a magneto-mechanical coupled response and
hence find use as the active components in sensors and actuators.
Some examples of this class of materials are Terfenol-D

(Tb1�xDyxFe2), Cobalt–Iron-Oxide (CoFe2O4) and Nickel–Iron-Oxide
(NiFe2O4) which show mechanical deformations induced by the
application of magnetic fields. Elementary effects and the model-
ing ideas for ferromagnetic materials are described in Kittel [1],
Cullity [2] and Spaldin [3]. Recent interest focuses on the construc-
tion of new, so-called multiferroic composites with strong mag-
netic–electric (ME) coupling, see for example Fiebig [4],
Eerenstein et al. [5] or Nan et al. [6]. The macroscopic properties
of ferromagnetic materials are determined through the evolution
of the domain walls and the rotation of the magnetic moment be-
tween the easy axes under the application of external magnetic
field and stresses. These time dependent changes are dissipative
in nature and therefore result in magnetic hysteresis that is typi-
cally observed at the macroscale. The description of these effects
through numerical models of continuum physics is a subject of
present research and may broadly be classified into two categories
namely, phenomenological macro-modeling approaches that do
not resolve the magnetic domains and micromagnetics that
involves the explicit characterization of the domain walls. For
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macroscopic models that describe the dissipative effects in ferro-
magnetic materials based on the concept of internal variables,
the reader is directed to magnetostrictive models that are de-
scribed in the works Smith et al. [7], Linnemann et al. [8] and Mie-
he et al. [9]. The work Miehe et al. [10] considers a dissipative
model for multiferroic composites.

In order to improve the predictive quality of such macroscale
models and to have a better understanding of the underlying
micromechanical driving forces, a greater emphasis on the con-
struction of micro-mechanically motivated experiments as well
as microscale models is called for. The development of such models
started with the seminal work of Landau and Lifschitz [11], where
the fundamentals of the so-called domain theory of magnetization
in rigid bodies as a consequence of energy minimization have been
laid. In the 1960s, Brown [12] laid the basis of the theory of micro-
magnetics, which is based on variational principles. The essential
difference between domain theory and micromagnetics is that
the former assumes a certain structure of the domains a priori
and proceeds by optimizing this assumed structure with respect
to the energy, while the latter delivers an optimum microstructure
directly by solving the micromagnetic equations. Here, traditional
approaches are restricted to the description of ferromagnetic ef-
fects in rigid bodies and neglect magneto-mechanical coupling.
The magnetization vector

M ¼ msm with m 2 Sd�1 ð1Þ

is introduced as a continuum field variable, which describes the
continuous evolution of the magnetization on a microscale. The sat-
uration magnetization ms is taken as a constant, or more precisely,
only temperature dependent. The underlying geometric structure of
the magnetization director m in (1), where Sd�1 denotes the hyper-
sphere in the Rd, constitutes the essential difference with respect to
the microelectric problems (e.g. phase-field models for ferroelectric
domains in Zhang and Bhattacharya [13], Schrade et al. [14]) that
employ a polarization vector as the order parameter which has no
constraint on its magnitude. This so-called Heisenberg–Weiss rela-
tion create a special demand on the theoretical formulations and in
particular, their numerical implementation. The foundations of the
ferromagnetic domains in literature is well developed. We refer to
the classic overview provided by Kittel [1] and a more recent out-
look in Hubert and Schäfer [15]. When ignoring for a moment the
magneto-mechanical coupling effects, the domain theory for rigid
bodies is based on the Landau–Lifschitz energy functional

EðmÞ ¼
Z
B

a
2
jrmj2 þuðmÞ �msm � h

h i
dV þ j

2

Z
R3
jr/j2 dV ; ð2Þ

the minimization of which, for a given external magnetic field h,
gives the shape of the magnetic domain. Here, the functional is valid
along with the additional constraint div½m�r/� ¼ 0, i.e. the third
Maxwell equation, where for a given magnetization m, / is the cor-
responding magnetic potential. The contributions to the free energy
comprise the gradient term, the non-convex term uðmÞ, whose en-
ergy landscape characterizes the easy axes of magnetization, and fi-
nally, the magnetostatic part. The central problem in the solution of
such equilibrium theories is the presence of the non-convex energy
term u. This applies equally to micro-magneto-elastic theories,
where we additionally have elastic and magnetostrictive terms in
the free energy, see Kittel [1] and Hubert and Schäfer [15]. This is
the motivation behind considering relaxation methods for the solu-
tion of non-convex variational problems which are dealt with, in
the works of James and Kinderlehrer [16], DeSimone [17] and DeSi-
mone and James [18]. Here, laminate-type structures are adopted to
characterize the magnetic microstructure. Further, in a ‘large body
limit,’ the gradient term in (2) and thus the boundary of the micro-
structure is neglected (a ¼ 0). Relaxation methods for rigid

ferromagnetic materials are described in DeSimone et al. [19]. For-
mulations that include elastic couplings are outlined in the work
DeSimone and James [18]. Numerical algorithms for implementa-
tion in non-convex variational problems are found in Prohl [20] as
well as Kruzik and Prohl [21]. In contrast, classical approaches to
dynamic theories (or more correctly, quasi-static viscous theories)
of domain evolution consider the celebrated Landau–Lifschitz–Gil-
bert Equation (LLG, see Gilbert [22]), which describes the temporal
evolution of the magnetization. This equation characterizes a
phase-field that is consistent with the geometric constraint (1)2. Mi-
cro-magneto-elastic theories with domain evolution based on the
LLG are found in Zhang and Chen [23,24], as well as the recent
descriptions on the magneto-electric effects in multiferroic materi-
als are in Li et al. [25].

However, the literature seems to be lacking a fundamental var-
iational principles of an incremental dissipative nature, where the
LLG arises as an Euler equation. This motivates the extension of the
incremental variational principles for macro-magneto-mechanical
problems with locally evolving internal variables proposed in Mie-
he et al. [9], towards gradient-extended dissipative structures with
balance-type evolution equations for order parameters which de-
scribe the magnetization. Furthermore, the algorithmic implemen-
tation of the LLG equation involving the space- and time-
discretization that is consistent with the geometric structure of
the magnetization director field is particularly challenging. This
has led to the implementation of projection techniques or different
norm preserving numerical methods, in order to have the discret-
ized problem capture the aforementioned geometric structure.
Weinan and Wang [26], Prohl [20] and Kruzik and Prohl [21] pres-
ent some solutions. In Lewis and Nigam [27] aspects of the geomet-
rical integration on spherical manifolds is considered with a
particular emphasis on micromagnetic problems. A consistent
and descriptive numerical treatment within the framework of fi-
nite elements is however, not given. The problem of satisfying
the constraint (1)2 bears a striking resemblance to the geometri-
cally exact descriptions of finite deformation of shell structures
with inextensible directors as described in Simó et al. [28].

With these aspects in mind, the construction of geometrically ex-
act, variational-based numerical models for the dynamic (or quasi-
static) temporal evolution of magnetic domains in ferromagnetic
and magnetostrictive materials is the key focus of this work. The chal-
lenge on the theoretical side is the formulation of a variational
principle in terms of the rates of the primary variables of the mul-
ti-field problem of micro-magneto-elasticity which, among other
things, returns a Landau–Lifschitz–Gilbert-type evolution equation
for the magnetization as an Euler equation. On the computational
side, the key challenge is the construction of a new space- and
time-discrete algorithmic procedure for micromagnetic problems
that preserves the geometric properties of the magnetization
director.

We propose a geometrically exact finite element method for
micro-magneto-elasticity that accounts for the rotational nature
of the magnetization director. Our work is inspired by Lewis
and Nigam [27] on geometric integration on spheres with applica-
tion to micromagnetics, and also by the sequence of works by
Simó and coworkers [29,28] on geometrically exact shell models
that account for an exact rotational treatment of the shell direc-
tors. These ideas on the parameterization of rotations and their
consistent implementation into time-space-discrete finite ele-
ment methods serve as guideline for the construction of geomet-
rically exact numerical methods in micromagnetics. In our
proposed formulation, we consider the magnetization director as
a geometric object, that is treated appropriately. With that guide-
line at hand, we outline a computational scenario for the evolu-
tion of magnetic domains that is characterized by the following
three ingredients:
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