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a b s t r a c t

A new approach for stabilizing unstable reduced order models (ROMs) for linear time-
invariant (LTI) systems through an a posteriori post-processing step applied to the algebraic
ROM system is developed. The key idea is to modify the unstable eigenvalues of the ROM
system by moving these eigenvalues into the stable half of the complex plane. It is demon-
strated that this modification to the ROM system eigenvalues can be accomplished using
full state feedback (a.k.a. pole placement) algorithms from control theory. This approach
ensures that the modified ROM is stable provided the system’s unstable poles are control-
lable and observable; however, the accuracy of the stabilized ROM is not guaranteed. To
remedy this difficulty and guarantee an accurate stabilized ROM, a constrained nonlinear
least-squares optimization problem for the stabilized ROM eigenvalues in which the error
in the ROM output is minimized is formulated. This optimization problem is small and
therefore computationally inexpensive to solve. Performance of the proposed algorithms
is evaluated on two test cases for which ROMs constructed via the proper orthogonal
decomposition (POD)/Galerkin method suffer from instabilities.

Published by Elsevier B.V.

1. Introduction

As computing power has increased, so has the complexity of multi-physics models. Simultaneously, there has been a
continuing push to incorporate uncertainty quantification (UQ) into high-fidelity simulations. Unfortunately, integrating
UQ techniques into high-fidelity simulation codes can present an intractable computational burden due to the high-dimen-
sional systems that arise, as well as the need to run these simulations many times in order to explore a space of design
parameters or uncertain inputs.

Reduced order modeling is a promising tool that can enable not only UQ, but also on-the-spot decision-making, optimi-
zation and/or control. A reduced order model (ROM) is a surrogate model constructed from a full order (high-fidelity) model
(FOM) that retains the essential physics and dynamics of the FOM, but has a much lower computational cost. Numerous ap-
proaches to construct ROMs exist, from simply running a numerical simulation on a coarser mesh, to surrogates obtained
from data-fitting (e.g., Kriging interpolation). More commonly, however, the term ‘‘reduced order model’’ refers to a
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projection-based reduced order model, the subject of the present work. The basic idea of projection-based reduced order
modeling is to project the state of a large dimensional space onto a small dimensional subspace that contains the essential
dynamics of the system. Examples of projection-based model reduction approaches include proper orthogonal decomposi-
tion (POD) [13,14,9], balanced proper orthogonal decomposition (BPOD) [19,11], balanced truncation [16,5], the reduced ba-
sis method [15,32], and Krylov-based techniques [31].

In order for a ROM to serve as a viable mathematical model of a physical system of interest, it is important that it pre-
serves certain crucial properties of the original system. Particularly important is that the ROM maintains numerical stability
of its underlying physical system, as stability is a prerequisite for the ROM’s accuracy and convergence. Some projection-
based model reduction techniques give rise to ROMs with an a priori stability guarantee. One example of such a method
is balanced truncation [16,5]. Unfortunately, the computational cost of this method, which requires the computation and
simultaneous diagonalization of infinite controllability and observability Gramians, makes balanced truncation computa-
tionally intractable for systems of very large dimensions (i.e., systems with more than 10,000 degrees of freedom (dofs)
[12]). Among the most popular model reduction techniques that are computationally tractable for very large systems are
the POD method [13,14,9] and the BPOD method [19,11]. In general, these methods lack an a priori stability guarantee. In
[18], Amsallem et al. suggest that POD and BPOD ROMs constructed for linear time-invariant (LTI) systems in descriptor form
tend to possess better numerical stability properties than POD ROMs constructed for LTI systems in non-descriptor form.
Although heuristics such as these exist, it is in general unknown a priori if a ROM constructed using POD or BPOD will pre-
serve the stability properties of the high-fidelity system from which the model was constructed. Hence, a ROM might be
stable for a given number of modes, but unstable for other choices of basis size; see [10,3,4] for examples of this for POD
models of compressible flow.

A literature search reveals that approaches for developing stability-preserving projection-based ROMs based on POD and
BPOD fall into roughly three categories, overviewed briefly below.

The first category of methods derives (a priori) a stability-preserving model reduction framework, often specific to a par-
ticular equation set. In [12], Rowley et al. show that Galerkin projection preserves the stability of an equilibrium point at the
origin if the ROM is constructed in an ‘‘energy-based’’ inner product. In [3,4], Barone et al. demonstrate that a symmetry
transformation leads to a stable formulation for a Galerkin ROM for the linearized compressible Euler equations [3,4] and
non-linear compressible Navier–Stokes equations [17] with solid wall and far-field boundary conditions. In [1], Serre et al.
propose applying the stabilizing projection developed by Barone et al. in [3,4] to a skew-symmetric system constructed by
augmenting a given linear system with its adjoint system. This approach yields a ROM that is stable at finite time even if
the solution energy of the full-order model is growing. In [35,40], Sirisup et al. develop a method for correcting long-term
unstable behavior for POD models using a spectral viscosity (SV) diffusion convolution operator. The advantage of approaches
such as these is they are physics-based, and guarantee a priori a stable ROM; the downside is that they can be difficult to
implement, as access to the high-fidelity code and/or the governing partial differential equations (PDEs) is often required.

A second category of methods is aimed to remedy the so-called ‘‘mode truncation instability’’. These methods
[36–38,23,41], motivated by the observation that higher order modes can give rise to nonphysical instabilities in the
ROM system, are often physics-based and minimally intrusive to the ROM. In [23], a ROM stabilization methodology that
achieves improved accuracy and stability through the use of a new set of basis functions representing the small, energy-
dissipation scales of turbulent flows is derived by Balajewicz et al. The stabilization of ROMs using shift modes and residual
modes was proposed in [37,38] by Noack et al. and Bergmann et al. respectively. Other authors, e.g., Terragni et al. [41], have
demonstrated that the stability and performance of a ROM can be improved by adapting the POD manifold to the local
dynamics.

The third category of approaches are those which stabilize an unstable ROM through a post-processing (a posteriori) sta-
bilization step applied to an unstable algebraic ROM system. Ideally, the stabilization only minimally alters the ROM physics,
so that the ROM’s accuracy is not sacrificed. In [2], Amsallem et al. propose a method for stabilizing projection-based linear
ROMs through the solution of a small-scale convex optimization problem. In [22], a set of linear constraints for the left-
projection matrix, given the right-projection matrix, are derived by Bond et al. to yield a projection framework that is
guaranteed to generate a stable ROM. In [20], Zhu et al. derive some large eddy simulation (LES) closure models for POD
ROMs for the incompressible Navier–Stokes equations, and demonstrate numerically that the inclusion of these LES terms
yields a ROM with increased numerical stability. In [39], Couplet et al. propose methods for correcting the behavior of a
low-order POD-Galerkin system through a coefficient calibration/minimization. A nice feature of these and similar
approaches is that they are easy to implement: often the stabilization step can be applied in a ‘‘black-box’’ fashion to an
algebraic ROM system that has already been constructed. However, the approaches can give rise to inconsistencies between
the ROM and FOM physics, thereby limiting the accuracy of the ROM.

The present work proposes and develops a new ROM stabilization method for LTI systems that falls into the second cat-
egory of methods described above. This approach can be used to stabilize ROMs constructed using any choice of reduced
basis (e.g., POD [8], balanced truncation [16,5], proper generalized decomposition [42], among others). The key idea, moti-
vated by the concept of full state feedback (a.k.a. pole placement) in control theory, is to change the unstable eigenvalues of a
system matrix by pushing them into the stable half of the complex plane. The eigenvalues of a ROM system matrix can be
modified by applying directly full state feedback (a.k.a. pole placement) algorithms from control theory [6,7,25], that is, by
adding to the ROM system a linear feedback control term, and solving for the feedback matrix such that the stabilized ROM
system has a desired set of eigenvalues. However, this approach can change the ROM physics, thereby making the ROM
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