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a b s t r a c t

When high Reynolds turbulent flows are combined with complex and large size geometries, computers
are no longer enough powerful to deal with Direct Numerical Simulation (DNS) and with the resolution
of all the scales of turbulence motion. Therefore, the RANS approaches solve averaged equations and use a
model to simulate these scales. This model contains dissipation processes that should not be polluted by
the numerical diffusion needed to stabilized approximations for convection-dominated flows. In this
paper, we proposed a strongly coupled numerical formulation for the Spalart–Allmaras model, in the
framework of stabilized finite element methods. Computations are performed for compressible Newto-
nian fluids (2D and 3D) on unstructured grids of high aspect ratio. Results are compared with experimen-
tal data and also with solutions obtained by different numerical strategies.

� 2012 Elsevier B.V. All rights reserved.

1. Introduction

One of the most important challenges in Computational Fluid
Dynamics (CFD) is the simulation of high Reynolds turbulent flows
around complex geometries of large size. Indeed, most of validated
production tools used in the industrial context aeronautics, turbo-
machinery, and combustion engines always assume simplified
strategies where turbulent scales are modeled by additional trans-
port equation(s) coupled with the Navier–Stokes equations. There
is an important variety of reduced models for the eddy viscosity
as a parameter or a variable. Among all these models, the single
eddy viscosity transport-type equation of [43] (SA), is one of the
simplest and most popular strategy, especially for aerodynamic
flows. The SA model, and its improved versions, provides some cal-
ibrated mechanisms for eddy production, dissipation and destruc-
tion that can be managed in a large range of applications. However,
the numerical scheme used to discretize the model should be care-
fully designed in order to avoid the annihilation of the subscale
turbulence model mechanism by the numerical dissipation.

Indeed, for convection dominated flows under consideration, there
is a need of numerical dissipation mechanism in order to stabilized
the numerical scheme.

For finite volumes/finite differences approaches, numerical sta-
bilization is achieved through an upwinding that is for example
embedded in the Godunov-type fluxes. However the associated Rie-
mann problems are solved in the directions of the normals to the
mesh faces. As a consequence the numerical diffusion is highly
dependent on the mesh topology even for high order MUSCL ver-
sions. This is very damaging for eddy viscosity transport, especially
since anisotropic meshes are often used for simulations of turbulent
flows around obstacles. To overcome this difficulty, it is strongly
recommended to use structured grids in the boundary layer. Indeed,
these meshes provide the correct directions for the Riemann fluxes
and reduce crosswind diffusion. This recommendation must face
the difficult problem of structured grids generation for simulations
over complex geometries of aeronautics design. Other alternatives,
in the context of finite volumes/finite difference schemes, is to
either use techniques for the control of crosswind diffusion, as in
[30,3,12] or the use of genuinely upwind solvers, as in [13,1]. This
research topic is still in progress. When the standard Galerkin finite
element method based on C0 polynomial approximation is applied
to convection-dominated flows, unphysical oscillations related to
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the absence of upwinding are obtained. Christie et al. [11] for one-
dimensional case, [19] for two-dimensional case, and [20] for one-
dimensional quadratic elements, proposed stable schemes for the
steady-state advection–diffusion equation. In this context, stabil-
ization is achieved by the use of Petrov–Galerkin formulation where
test functions are different to trial functions. The test functions are
locally defined so as to send more information downstream. Exact
nodal values can even be obtained in one-dimensional case. This
formulation also suffers of arbitrary crosswind diffusion. In the
beginning of the 1980s, [23] pointed out that to derive stables
schemes, it is sufficient to add an artificial diffusion term only in
the direction of streamlines. They observed that such a streamline
diffusion term can be introduced in the standard Galerkin method
without modifying the original governing equation. The method
consists in perturbing the weighting functions with their deriva-
tives, thus resulting in a high-order accurate method with good sta-
bility properties. The Streamline Upwind Petrov Galerkin (SUPG)
stabilized finite element method, provides a general framework to
define the numerical dissipation, by proper definition of the stabil-
ization tensor. It allows to obtain a stable numerical scheme any
damaging mechanism for unresolved turbulence scales. SUPG is a
residual-based upwinding approach proposed in [9] for advec-
tion–diffusion and incompressible Navier–Stokes equations. SUPG
has been later extended to the compressible Navier–Stokes equa-
tions (see [24,45]) in the context of conservative variables. Since
the first developments of this method in the eighties, the SUPG
scheme has been widely used and improved. The formulation was
rewritten using entropy variables plus a shock-capturing term
added to handle discontinuities in [25]. It has been shown that the
formulation written using conservative variables and supple-
mented with a shock-capturing term is as accurate as the formula-
tion using entropy variables [5]. Later on the SUPG scheme has been
applied to the simulation of turbulent flows [31,42,7]. In such prob-
lems, a finite element approach where dissipation can be controlled
is a promising method. It was also shown by Hughes [22] that stabi-
lized methods could be derived within the general framework of
variational multiscale formulation (VMS). For a given set of equa-
tions, the VMS framework provides attractive guidelines for the
development of stabilized schemes. VMS also provides tools for
the Large-Eddy-Simulations (LES) and has been intensively used
in this field as in [26] and in [33]. When the goal is to stabilize the
resolved scales, the main issue in VMS is to derive an approximation
(algebraic) of fine scales and the impact on coarse scales. This stabil-
ization process was earlier defined by a parameter and recently new
ways of defining it based on element-level matrices and vectors
were introduced. The amount of additional diffusion introduced in
SUPG formulations is tuned by a tensor parameter s that must be
chosen in a suitable way. In the context of compressible Euler and
Navier–Stokes equations, according to a lot of numerical tests, sev-
eral recipes have been proposed for the choice of s (see for example
[42,46]). The need for a suitable convincing argument to guide the
choice of s is still considered as a major drawback of SUPG methods.
In presence of strong shocks, an additional discontinuity-capturing
term is added to the SUPG scheme, [28], to remove specific oscilla-
tions produced in this context and improve the robustness of the
numerical approach.

This paper is concerned with a strongly coupled and accurate
numerical approximation of the SA turbulence model within the
framework of stabilized finite element method for unstructured
anisotropic grids. The additional transport equations for subscale
model are often numerically weakly coupled to Navier–Stokes
equations through operator splitting. These variables are strongly
coupled for the transport process within a stabilized finite element
formulation. The stabilization tensor is defined, such as to reduce
mesh dependencies and to still be consistent at the asymptotic of
highly anisotropic meshes. Indeed, this tensor involves a measure

of the local length scale h which should be carefully defined in
the case of a stretched element. In this work, the local length scale
is implicitly given by the inverse of the absolute flux jacobian ma-
trix as proposed in [4] and more recently in [2]. The stabilized fi-
nite element strategy is also suitable for complex geometries and
the resulting schemes have a compact stencil which we exploit
for efficient parallel strategies combining domain decomposition
and message passing tools (MPI). The paper is organized as follows:
in Section 2 the description of the Spalart–Allmaras model fully
coupled with the Navier–Stokes equations is given. Section 3 deals
with the SUPG formulation for this type of turbulent compressible
flows, and Section 4 is devoted to the numerical results. Finally,
concluding remarks are given in Section 5.

2. Spalart–Allmaras turbulence model for compressible flows

2.1. Navier–Stokes equations

We consider a turbulent flow described by compressible Na-
vier–Stokes equations coupled with an eddy viscosity transport
equation. The conservative form of the Reynolds Average Navier–
Stokes equations can be written as follows (Gravity effects are as-
sumed negligible):
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where q is the density, u the velocity, e the specific total energy. The
pressure p and the heat flux q are respectively defined by the per-
fect gas equation of state and the Fourier law:

p ¼ ðc� 1ÞqT and q ¼ � cpðlþ ltÞ
Pr
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2
juj2:

Pr is the laminar Prandtl number, cp is the heat capacity at con-
stant pressure, T is the temperature. For newtonian compressible
fluids the stress tensor is given by

p ¼ ðlþ ltÞ
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where l and lt are respectively the laminar and the turbulent vis-
cosities. In order to close these equations we need either an alge-
braic formula or an additional system of equations to define lt .

2.2. Turbulence closure model

The Spalart–Allmaras (SA) model provides a single equation for
the evolution of the turbulent kinematic viscosity mt ¼ lt=q. This is
an empirical and powerful equation that models production, trans-
port, diffusion and destruction of the turbulent viscosity. In [43],
the method is described for incompressible flows. Although there
are different approaches to adapt the model for compressible
flows, we consider in the sequel the following extension

@q~m
@t
þ @

@x
� q~muð Þ ¼ Mð~mÞ~mþ Pð~mÞ~m� Dð~mÞ~m ð2Þ

where Mð~mÞ~m represents the diffusion term, Pð~mÞ~m the production
source term and Dð~mÞ~m the wall destruction source term. The eddy
viscosity is obtained from ~m via

mt ¼ ~mfv1; f v1 ¼
v3

v3 þ c3
v1

; v ¼
~m
m

ð3Þ

where m is the molecular viscosity. The production source term is gi-
ven by

110 C. Wervaecke et al. / Comput. Methods Appl. Mech. Engrg. 233–236 (2012) 109–122



Download	English	Version:

https://daneshyari.com/en/article/498288

Download	Persian	Version:

https://daneshyari.com/article/498288

Daneshyari.com

https://daneshyari.com/en/article/498288
https://daneshyari.com/article/498288
https://daneshyari.com/

