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a b s t r a c t

In this work a numerical strategy to address the solution of the blood flow in one-dimensional arterial
networks through a topology-based decomposition is presented. Such decomposition results in the local
analysis of the blood flow in simple arterial segments. Hence, iterative methods are used to perform the
strong coupling among the segments, which communicate through non-overlapping interfaces. Specifi-
cally, two approaches are considered to solve the associated nonlinear interface problem: (i) the Newton
method and (ii) the Broyden method. Moreover, since the modeling of blood flow in compliant vessels is
tackled using explicit finite element methods, we formulate the coupling problem using a two-level time
stepping technique. A local (inner) time step is used to solve the local problems in single arteries, meeting
thus local stability conditions, while a global (outer) time step is employed to enforce the continuity of
physical quantities of interest among the one-dimensional segments. Several examples of application are
presented. Firstly a study about spurious reflections produced at interfaces as a consequence of the two-
level time stepping technique is carried out. Secondly, the application of the methodologies to physiolog-
ical scenarios is presented, specifically addressing the solution of the blood flow in a model of the entire
arterial network. The effects of non-uniformities of the material properties, of the variation of the radius,
and of viscoelasticity are taken into account in the model and in the (local) numerical scheme; they are
quantified and commented in the arterial network simulation.

� 2012 Elsevier B.V. All rights reserved.

1. Introduction

Numerical simulations of the cardiovascular system using a col-
lection of simple distributed one-dimensional (1-D), or even
lumped zero-dimensional (0-D), models have proven to be able
to provide useful information under physiological and pathophys-
iological conditions. They give insight about the main characteris-
tics of the flow and about the interplay among physical
phenomena taking place in the systemic arteries [1–9].

From the computational viewpoint, there are some situations in
which it is convenient to split the solution process into simpler
problems, for instance: (i) in cases where the available computa-
tional implementations are based on black-box codes which can-
not be accessed by the user [6], or (ii) in cases in which the
number of arteries grows significantly, and the computational cost
increases substantially [10]. Those situations pose the problem of
developing decomposition strategies to deal with the coupled

problem in an iterative manner. This implies resorting to numeri-
cal methods for solving the resulting nonlinear equations corre-
sponding to the continuity equations considered at the interfaces
among arterial segments.

Several approaches can be used for the solution of the blood
flow in the entire arterial network. A first one corresponds to
solve at each time step a trivial system of equations with infor-
mation coming from the previous time step. This approach has
drawbacks concerning stability due to continuity conditions at
branching sites. A second option is to solve at each time step
an algebraic system of equations in which all the unknowns are
properly coupled. Unlike the first approach, this is stable but
may be expensive in view of the large level of coupling among
degrees of freedom within arterial segments. To overcome these
issues, in this work we use a combination of both methods to
solve the stability issues of the first case still making possible
to perform explicit computations within each arterial segment
due to the implicit coupling at the interfaces among them. This
mixed approach is achieved by planning a numerical method that
makes use of a two-level time discretization as will be explained
afterwards.

0045-7825/$ - see front matter � 2012 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.cma.2012.05.017

⇑ Corresponding author. Tel.: +41 21 69 32733.
E-mail addresses: cristiano.malossi@epfl.ch (A. Cristiano I. Malossi), pjblanco@

lncc.br (P.J. Blanco), simone.deparis@epfl.ch (S. Deparis).

Comput. Methods Appl. Mech. Engrg. 237–240 (2012) 212–226

Contents lists available at SciVerse ScienceDirect

Comput. Methods Appl. Mech. Engrg.

journal homepage: www.elsevier .com/locate /cma

http://dx.doi.org/10.1016/j.cma.2012.05.017
mailto:cristiano.malossi@epfl.ch
mailto:pjblanco@ lncc.br
mailto:pjblanco@ lncc.br
mailto:simone.deparis@epfl.ch
http://dx.doi.org/10.1016/j.cma.2012.05.017
http://www.sciencedirect.com/science/journal/00457825
http://www.elsevier.com/locate/cma


The decomposition of an arterial network into subdomains can
be performed in different ways. A first option is to split the entire
cardiovascular system into subregions corresponding to specific
vascular areas, for instance legs, arms, head, organs, and so on,
see e.g. [11]. A second option, followed in the present work, is to
explore the system into the constituent arterial segments as done
in [12].

Each arterial segment is represented by the 1-D Fluid–Structure
Interaction (FSI) model developed in [6] and is fed with proper
boundary conditions at both segment boundaries. The discretiza-
tion is carried out using a Taylor–Galerkin approach which yields
an explicit scheme to solve for the volumetric flow rate, the pres-
sure, and the lumen area for a single pipe. Moreover, in the present
work the numerical scheme presented in [6] is further extended to
deal with material and geometrical spatial inhomogeneities. In
addition, the compatibility conditions that arise at the discrete le-
vel to close the discrete problem are adapted to this more general
situation.

Continuity conditions are imposed among arterial segments,
leading to a coupled network of deformable vessels. We propose
to solve iteratively this coupled problem following the ideas
developed in [13] for linear problems and recently extended in
[14,15] to flow problems in rigid pipes and in [11] to hemodynam-
ics. Previous developments of iterative techniques to couple
iteratively 1-D FSI models with Taylor–Galerkin explicit numerical
formulations can be found in [12]. There, the authors use relaxed
Gauss–Seidel iterations that relies on a hierarchy among the local
models, dictating a compatible choice of the coupling conditions
(volumetric flow rate versus average pressure). The poor conver-
gence properties and lack of flexibility in setting boundary condi-
tions at the arterial segment interfaces of such method can
create difficulties in real situations in which we need to couple
hundreds of arterial segments.

In view of these problems, we resort to two alternatives to solve
the nonlinear coupling problem: (i) the Newton method and (ii)
the Broyden method. The performance of these methods is as-
sessed through several examples of application.

Another contribution of the present work is the development of
a two-level time step technique to increase computational effi-
ciency. Firstly, we recognize an inner local time step; it is used to
solve the blood flow dynamics at each arterial segment and it is
in general determined by the Courant–Friedrichs–Lewy (CFL) con-
dition. Secondly, we consider an outer global time step which is
used to match the physical quantities of interest at interfaces
among arterial segments. In other words, the global time step is
the one responsible for enforcing the strong coupling among the
segments. This is convenient also when coupling 1-D and three-
dimensional (3-D) FSI problems to reduce the number of solutions
of expensive 3-D problems with very small time steps (needed by
time discretization strategy of the 1-D problem).

The generation of spurious reflections at interfaces between
segments as a consequence of the proposed two-level time step
technique is analyzed. In this regard we unveil the dependence
of these reflections upon the wavelength and upon the ratio
between the local and global time steps. In addition, we propose
a simple interpolation scheme to reduce the reflections at inter-
faces whenever the local time step is different from the global time
step.

Another aspect of the formulation, specific to the Newton meth-
od, is related to the approximation of the Jacobian in the presence
of the two-level time step technique. Two procedures are com-
pared which lead to different ways of approximating the Jacobian,
and therefore to different versions of the (actually inexact) Newton
method: (i) Jacobian computed using a finite difference scheme
and (ii) Jacobian computed using an approximated tangent prob-
lem formulation.

Finally, to include the viscoelastic properties of the vessel wall
in the 1-D model (see, e.g., [6,16–18]) we propose a split time
advancing scheme. To consider non-uniformities of the material
properties and a the variation of the radius [17] we have added
some additional terms in the original model. Indeed, these have
non-negligible effects, as we show in the results.

All the developments in the present contribution are mainly
envisaged for the hemodynamics field. Therefore, besides the
study of spurious reflections carried out in academic situations,
the solution of an entire arterial tree model is presented to
show the robustness of the strategy in a far more complex
system.

This work is organized as follows. Section 2 presents the gov-
erning equations, in continuous and discrete forms, for the 1-D
FSI model of a single arterial segment. Section 3 presents the global
arterial network problem and corresponding coupling equations,
together with the proposed iterative methods. Section 4 deals with
academic applications focusing on iterations numbers and spuri-
ous reflections, while Section 5 presents a series of comparisons
of the performance of the different developed alternatives in phys-
iological scenarios. Section 6 closes this work with the final
remarks.

2. 1-D FSI model equations

The 1-D FSI model provides a simplified representation of the
blood flow in deformable vessels. Although incapable to give a
detailed description of the full 3-D structure of the flow field
(such as recirculation or wall shear stress), it can effectively
describe the wave propagation phenomena due to the compli-
ance of the wall. In this section we first describe the governing
equations for the 1-D FSI model. Then we introduce a numerical
discretization of the problem. Finally, we close the resulting
discrete formulation with an appropriate set of compatibility
conditions.

2.1. Mass and momentum conservation laws

The 1-D FSI model is derived from the incompressible Navier–
Stokes equations, by making some simplifying assumptions and
integrating over the cross-section of the artery Sðt; zÞ, being
t 2 ð0; T� the time and z 2 ½0; L� the axial coordinate, with L the
length of the vessel (see Fig. 1). The pressure on each transversal
section is assumed to be constant, and the axial velocity profile
sðrÞ is chosen a priori through the power-law relation
sðrÞ ¼ h�1ðhþ 2Þð1� rhÞ, where r is the relative radial coordinate
and h is a proper coefficient. This is a commonly accepted approx-
imation (see, for instance, [19,20]), where h ¼ 2 leads to a parabolic
velocity profile, while h ¼ 9 leads to a more physiological profile,
following the Womersley theory.

The resulting state variables are

Aðt; zÞ ¼
Z

Sðt;zÞ
dS;

Qðt; zÞ ¼
Z

Sðt;zÞ
uzFðt; zÞdS;

Pðt; zÞ ¼ 1
Aðt; zÞ

Z
Sðt;zÞ

pFðt; zÞdS;

where A is the cross-sectional area, Q the volumetric flow rate, uzF

the fluid axial velocity, and P the average pressure. A straightfor-
ward derivation of the 1-D FSI model can be found in [21]. The
resulting governing equations for continuity of mass and momen-
tum are
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