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Extensions of deflation techniques developed for the Poisson and Navier equations (Aubry et al., 2008;
Mut et al., 2010; Lohner et al., 2011; Aubry et al., 2011) [1-4] are presented for the Helmholtz equation.
Numerous difficulties arise compared to the previous case. After discretization, the matrix is now inde-
finite without Sommerfeld boundary conditions, or complex with them. It is generally symmetric com-
plex but not Hermitian, discarding optimal short recurrences from an iterative solver viewpoint (Saad,
2003) [5]. Furthermore, the kernel of the operator in an infinite space typically does not belong to the
discrete space. The choice of the deflation space is discussed, as well as the relationship between disper-
sion error and solver convergence. Similarly to the symmetric definite positive (SPD) case, subdomain
deflation accelerates convergence if the low frequency eigenmodes are well described. However, the ana-
lytic eigenvectors are well represented only if the dispersion error is low. CPU savings are therefore
restricted to a low to mid frequency regime compared to the mesh size, which could be still relevant from
an application viewpoint, given the ease of implementation.
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1. Introduction

The Helmholtz equation is the archetype of the wave equation
in the time domain. Applications of this equation are numerous
and include acoustic scattering, geophysical seismic imaging, wire-
less communications. Due to this vast area of applications, a sub-
stantial effort has been invested in their numerical resolution.
After discretization, these methods give rise to large, possibly
sparse, matrices and their inversion may be time consuming. For
large three dimensional problems, iterative methods in a broad
sense (geometric or algebraic multigrid, iterative solvers, domain
decomposition methods) represent the methods of choice due to
memory (and possibly CPU) requirements. However their robust-
ness is often criticized beyond the elliptic case. The main motiva-
tion of this work is given by the challenge of solving iteratively
the coupled elastodynamic acoustic problem. The first building
block for the elastic part consisted in extending the results of the
scalar Poisson solver to the static elastic system. This was pre-
sented in [4]. The present work constitutes the first departure from
the symmetric definite positive (SPD) case for scalar equation. In
the literature, the Helmholtz equation has been mainly studied
from two apparently different viewpoints, either from a discretiza-
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tion and accuracy viewpoint, or from an algebraic solver viewpoint.
However, in both approaches plane waves, which are solutions of
the Helmholtz equation in free space play a special part.

From an accuracy viewpoint, the oscillating nature of the
Helmholtz equation gives rise to the famous pollution effect for
high wave numbers [6-9]. Beside refining the mesh in the Finite
Element h-refinement approach and increasing the polynomial or-
der in the p-refinement paradigm, numerous methods have been
designed to stabilize the Helmholtz equation. The Generalized
Finite Element Method (GFEM) [10] modifies a bilinear stencil to
have minimum pollution effect by minimizing the distance be-
tween the zeros of the discrete symbol and the one of the contin-
uous symbol. The Partition of Unity Method (PUM) [11], uses
analytical functions in the shape function definition. Extensions
in three dimensions are presented in [12] in a Finite Element
context and [13] in a Boundary Element context. The ultraweak
method [14] relies on test functions that are solutions of the ad-
joint problem. The least square method [15] uses plane waves or
Bessel functions in a discontinuous manner inside each element.
The Galerkin Least Square (GLS) method [16] intends to stabilize
the Helmholtz equation by adding consistently new weighted
terms. The Residual Free Method (RFM) [17] relies on a bubble
which verifies the analytical solution of the Helmholtz equation
inside each element. A discontinuous Galerkin method [18]
enriches the classical polynomial space with plane waves, and con-
tinuity is enforced weakly through Lagrange multipliers. The
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Discrete Singular Convolution (DSC) [19] method applies singular
convolution with a special kernel for high wave numbers. The
residual based method [20] belongs to the variational multiscale
methods but includes the residual on inter-element boundaries.
As underlined, most of these methods rely on a continuous or dis-
continuous introduction of plane waves to improve the classical fi-
nite element discretization.

From an algebraic solver viewpoint, numerous techniques have
also been attempted, including preconditioning, geometric and
algebraic multigrid, and domain decomposition methods. A re-
view is given by Erlangga in [21]. For the first class of methods,
Magolu Monga Made et al. [22,23] proposes to use an imaginary
perturbation of the original matrix as preconditioner. A large class
of preconditioners begins with the work in Bayliss et al. [24],
where the normal equation is solved with a symmetric successive
over relaxation (SSOR) preconditioner relying only on the discrete
Laplacian part of the Helmholtz operator. The preconditioner is
now symmetric positive definite and a few sweeps of a multigrid
solver may be used. Later, Laird and Giles [25] add a mass matrix
part in the preconditioner while the mass matrix is associated
with a negative sign in the original equation, and do not include
boundary conditions for this matrix. Recently, Erlangga et al.
[26,27] add a complex shift for the mass matrix, still allowing
the possibility of a multigrid solve for the the fast inversion of
the preconditioner, as shown in an unstructured context by Air-
aksinen et al. [28]. Bollhofer et al. [29] present an algebraic mul-
tilevel preconditioner in heterogeneous media. Finally, Osei-
Kuffuor and Saad [30] combine imaginary diagonal shifts with
an algebraic recursive multilevel preconditioner. Recently, defla-
tion has been applied to the Helmholtz equation discretized by
an Integral Formulation [31]. The deflation space is composed of
the eigenvectors of a coarse grid operator interpolated on the fine
grid. It is clearly shown that deflation may improve drastically
convergence, and as a by product, demonstrates the weak non
normality of the Helmholtz equation [32]. However, the coarse
mesh size presented is of the order of 40 percent of the size of
the fine mesh, which is not affordable for large problems. Regard-
ing multigrid techniques, a major breakthrough comes from
Brandt and Livshits [33-35]. There are at least two reasons for
the bad convergence of standard multigrids for the Helmholtz
equation. First, standard smoothers diverge due to the non SPD
behavior of the operator. Secondly, due to the oscillatory nature
of the Helmholtz solution, standard restriction operators put a
heavy constraint on the size of the coarse grid. To alleviate the lat-
ter major drawbacks, exponential restriction is performed, and
only the smooth part of the solution is transfer to the ray grids,
where it is solved efficiently. A similar approach is followed in
Lee et al. [36] for a first order system least-squares formulation.
Kim and Kim [37] use a Gauss Seidel (GS) or Conjugate Gradient
for the Normal equation (CGNR) as a smoother. The large coarse
grid problem is solved by a domain decomposition method. Elman
et al. [38] use GMRES as a smoother in an outer flexible loop for
robustness. Another approach is proposed in Vanek et al. [39],
where aggregation is first performed to obtain a coarse level. Rely-
ing on the free space solution of the Helmholtz equation, a tenta-
tive prolongation is then build and smoothed through a
polynomial matrix iteration, whose main aim is to minimize the
energy of the columns of the prolongation. Oscillatory functions
are interpolated with a constant value and with their gradients,
as they do not belong exactly to the discrete space. As a final re-
mark on multigrids relying on exponential interpolation, only
two dimensional examples with very simple geometries have
been shown to illustrate their numerical performances. Domain
decomposition methods have also been applied to the Helmholtz
equation by Farhat et al. for continuous [40] and discontinuous

discretizations [41] relying on plane waves for the Lagrange mul-
tiplier space as well as for the primary variable.

It is therefore obvious that plane waves play a special part in the
numerical resolution of the Helmholtz equation, as much from an
accuracy as from an efficiency viewpoint. The shift produced by the
wave number in the Laplacian spectrum implies that Laplacian
eigenmodes associated with higher and higher eigenvalues become
low energy modes impeding convergence. Furthermore, as noted
in [36], though not from an algebraic viewpoint, the density of
these modes increases with the wave number, as the Laplacian
spectrum is much denser at its upper end. As plane waves do not
belong to low order discretization, it may be foreseen that they will
approximate well the low energy modes only for low to mid
frequencies. The dispersion induced by the discretization will cre-
ate a larger mismatch as the wave number increases.

In this paper, deflation applied to the Helmholtz equation is
presented. Deflation has been shown to possess various computa-
tional advantages compared to other algebraic solvers for large
unstructured meshes [1-4]. Whereas the multigrid approach gives
a sound basis to tackle the problem, the geometric multigrid hier-
archy is awkward to treat in an unstructured context with moving
bodies, and the algebraic set up is slow. As noted in [38], the wave
ray multigrid is “considerably more difficult to implement” than
the multigrid proposed in the latter paper, even though it may
be more efficient. It was hoped that deflation may achieve this effi-
ciency in a three dimensional context with the ease of implemen-
tation of the deflation technique. However, this aim is only
partially met. After this introduction, the deflation technique is
reviewed in Section 2, and differences between the SPD and the
non SPD case are highlighted. The complex deflated GMRES algo-
rithm is recalled. It will be the method of choice for the next sec-
tion as the Helmholtz equation gives rise to a symmetric
complex but non Hermitian matrix. The Helmholtz equation is
then presented in Section 3. Deflation applied to the discrete Helm-
holtz equation is considered. Finally, numerical results are pro-
vided in Section 4.

2. Complex deflation

In this section, the complex deflated GMRES used in this paper
is presented. First, deflation applied to iterative solvers is suc-
cinctly reviewed. The Hermitian case is then recalled, followed
by the non Hermitian case. Finally, the complex deflated GMRES
is derived.

2.1. Deflation applied to iterative solvers

Deflation is an old and common technique in iterative solvers
for eigenvalues [42,43]. In his seminal paper [44], Nicolaides accel-
erates an iterative solver for symmetric positive definite matrices,
the widely utilized preconditioned conjugate gradient (PCG) [45],
through a deflation technique (see [1] for other references). In a
non symmetric context, Morgan [46] considers deflation to
improve the GMRES restart. More recently, deflation has been
extended to non symmetric solvers with success in [47,48]. The de-
flated preconditioned GMRES is at the crossroads of various itera-
tive solvers for large matrices such as multigrid, either geometric
or algebraic, domain decomposition, and of course Krylov subspace
methods, as all these methods may be interpreted as projection
methods [49,5,50]. Even though the core algorithm is constituted
by a Krylov iterative solver, its main aim is to remove from the
residual eigenvector components that are difficult to remove by
standard iterative solvers. Convergence of GMRES for symmetric
positive definite matrices can be shown to strongly rely on the con-
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