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a b s t r a c t

The reduced-basis control-variate Monte-Carlo method was introduced recently in [S. Boyaval, T. Leliè-
vre, A variance reduction method for parametrized stochastic differential equations using the reduced
basis paradigm, Commun. Math. Sci. 8 (2010) 735–762 (Special issue ‘‘Mathematical Issues on Complex
Fluids’’)] as an improved Monte-Carlo method, for the fast estimation of many parametrized expected
values at many parameter values. We provide here a more complete analysis of the method including
precise error estimates and convergence results. We also numerically demonstrate that it can be useful
to some parametric frameworks in Uncertainty Quantification, in particular (i) the case where the param-
etrized expectation is a scalar output of the solution to a Partial Differential Equation (PDE) with stochas-
tic coefficients (an Uncertainty Propagation problem), and (ii) the case where the parametrized
expectation is the Bayesian estimator of a scalar output in a similar PDE context. Moreover, in each case,
a PDE has to be solved many times for many values of its coefficients. This is costly and we also use a
reduced basis of PDE solutions like in [S. Boyaval, C. Le Bris, Y. Maday, N. Nguyen, A. Patera, A reduced
basis approach for variational problems with stochastic parameters: Application to heat conduction with
variable robin coefficient, Comput. Methods Appl. Mech. Eng. 198 (2009) 3187–3206]. To our knowledge,
this is the first combination of various reduced-basis ideas, with a view to reducing as much as possible
the computational cost of a simple versatile Monte-Carlo approach to Uncertainty Quantification.

� 2012 Elsevier B.V. All rights reserved.

1. Introduction

The reduced-basis (RB) control-variate Monte-Carlo (MC) meth-
od was recently introduced in [1] to compute fast many expecta-
tions of scalar outputs of the solutions to parametrized ordinary
Stochastic Differential Equations (SDEs) at many parameter values.
But as a simple, generic MC method with reduced variance, the RB
control-variate MC method can also be useful in other parametric
contexts and the main goal of this article is to show that it can
be useful to Uncertainty Quantification (UQ) too, possibly in com-
bination with the standard RB method in a PDE context.

There is a huge literature on the UQ subject. Indeed, to be actu-
ally predictive in real-life situations [2], most numerical models re-
quire (i) to calibrate as much as possible the parameters and (ii) to
quantify the remaining uncertainties propagated by the model. Be-
sides, the latter two steps are complementary in an iterative proce-
dure to improve numerical models using data from experiments:
quantifying the variations of outputs generated by input parame-

ters allows one to calibrate the input uncertainties with data and
in turn reduces the epistemic uncertainty in outputs despite irre-
ducible aleatoric uncertainty. Various numerical techniques have
been developed to quantify uncertainties and have sometimes
been used for years [3,4]. But there are still a number of challenges
[5–7].

For PDEs in particular, the coefficients are typical sources of
uncertainties. One common modelling of these uncertainties en-
dows the coefficients with a probability distribution that presum-
ably belongs to some parametric family and the PDEs solutions
inherit the random nature of the uncertainty sources. A Bayesian
approach is often favoured to calibrate the parameters in the prob-
ability law using observations of the reality [8,9]. But the accurate
numerical simulation of the PDEs solutions as a function of param-
etrized uncertain coefficients is a computational challenge due to
its complexity, and even more so is the numerical optimization
of the parameters in uncertain models. That is why new/improved
techniques are still being investigated [10,11]. Our goal in this
work is to develop a practically useful numerical method that
bases on the simple versatile MC approach to simulate the proba-
bility law of the uncertain coefficients. We suggest to use the RB
control-variate MC method in some UQ frameworks to improve
the computational cost of the naive MC method, in particular in
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contexts where some coefficients in a PDE are uncertain and others
are controlled.

There exist various numerical approaches to UQ. The computa-
tional cost of MC methods is certainly not optimal when the ran-
dom PDE solution is regular, see e.g. [12]. But we focus here on
MC methods because they are (a) very robust, that is useful when
the regularity of the solution with respect to the random variables
degrades, and (b) very easy to implement (they are non-intrusive in
the sense that they can use a PDE numerical solver as a black-box,
with the values of the PDE coefficients as input and that of the dis-
crete solution as output). Besides, note that even when the random
PDE solution is very regular with respect to the random variables,
it is not yet obvious how algorithms can take optimal profit of the
regularity of random PDE solutions and remain practically efficient
as the dimension of the (parametric) probability space increases,
see e.g. [13]. So, focusing on a MC approach, our numerical chal-
lenge here is basically two-sided: (i) on the probabilistic side,
one should sample fast the statistics of the random PDE solution
(or of some random output that is the quantity of interest), and
(ii) on the deterministic side, one has to compute fast the solution
to a PDE for many realizations of the random coefficients. It was
proposed in [14] to use the RB method in order to reduce the
numerical complexity of (ii), but this does not fully answer the
numerical challenge. In particular, although the RB method can im-
prove naive MC approaches at no-cost (since the selection of the
reduced basis for the PDE solutions at various coefficients values
can be trained on the same large sample of coefficients values that
is necessary to the MC sampling, see also [15]), the resulting MC
approach might still be very costly, maybe prohibitively, due to
the large number of realizations that is necessary to accurately
sample the statistics of the PDE solution (side (i) of our challenge
above). In this work, we thus tackle the question how to reduce
the numerical complexity of (i). We have in mind the particular
but useful case where one is interested in the expected value of a
random scalar output of the random PDE solution as a function
of a (deterministic) control parameter, typically another (determin-
istic) coefficient in the UQ problem which is ‘‘under control’’.
(Think of the construction of response surfaces for a mean value
as a function of control parameters.) A similar parametric context
occurs in Bayesian estimation, sometimes by additionally varying
the hyper parameters or the observations. In any case, our goal is
to reduce the computational cost of a parametrized (scalar) MC
estimation when the latter has to be done many times for many
values of a parameter, and we illustrate it with examples meaning-
ful in a UQ context.

To accelerate the convergence of MC methods as numerical
quadratures for the expectation of a random variable, one idea is
to tune the sampling for a given family of random variables like
in the quasi-Monte-Carlo (qMC) methods [16–18]. Another com-
mon idea is to sample another random variable with same mean
but with a smaller variance. Reducing the variance allows one to
take smaller MC samples of realizations and yet get MC estima-
tions with confidence intervals of similar (asymptotic) probability.
Many techniques have been designed in order to reduce the vari-
ance in various contexts [19,20]. Our RB control-variate MC meth-
od bases on the so-called control-variate technique. It has a specific
scope of application in parametric contexts. But it suits very well to
some computational problems in mathematical finance and molec-
ular dynamics as shown in [1], and can be useful in UQ as we are
going to see.

The paper is organized as follows. In Section 2, we recall the RB
control-variate technique as a general variance reduction tool for
the MC approximation of a parametrized expected value at many
values of the parameter. The presentation is a bit different to that
in [1], which was more focused on SDEs. Moreover, we also give
new error estimates and convergence results. In Section 3, the RB

control-variate MC method is applied to compute the mean of a
random scalar output in a model PDE with stochastic coefficients
(the input uncertainty) at many values of a control parameter. In
Section 4, it is applied to Bayes estimation, first for a toy model
where various parametric contexts are easily discussed, then for
the same random PDE as in Section 3.

We also note that this work does not only improve on the RB
approach to UQ [14] but also on an RB approach to Bayesian esti-
mation proposed in [21] with a deterministic quadrature formula
to evaluate integrals. For both applications, to our knowledge,
our work is the first attempt at optimally approximating the solu-
tion with a simple MC/FE method by combining RB ideas of two
kinds, stochastic and deterministic ones [22]. Note that for conve-
nience of the reader non-expert in RB methods, the standard RB
method [23,24] is briefly recalled in Section 3.3.

2. The RB control-variate MC method

The RB control-variate technique is a generic variance reduction
tool for the MC approximation of a parametrized expected value at
many values of the parameter. In this section we recall the tech-
nique for the expectation EðZkÞ of a generic square-integrable ran-
dom variable Zk 2 L2

P parametrized by k. The principle for the
reduction of computations is based on the same paradigm as the
standard RB method and allows one to accelerate the MC compu-
tations of many EðZkÞ at many values of k. Our presentation is
slightly different than the initial one in [1] and gives new elements
of analysis (error estimates and convergence results).

2.1. Principles of RB control-variate MC method

Let P be a probability measure such that Zk is a random variable
in L2

P for all parameter values k in a given fixed range K. Assume
one has an algorithm to simulate the law of Zk whatever k 2 K.
Then, at any k 2 K, one can define MC estimators EMðZkÞ that pro-
vide useful approximations of EðZkÞ :¼

R
ZkdP, by virtue of the

strong law of large numbers

EMðZkÞ :¼ 1
M

XM

m¼1

Zk
m !

P�a:s:

M!1
EðZkÞ ð2:1Þ

provided the number M of independent identically distributed
(i.i.d.) random variables Zk

m � Zk; m ¼ 1 . . . M, is sufficiently large.

Here, the idea is: if EðZkI
i Þ is already known with a good precision

for I parameter values kI
i ; i ¼ 1 . . . I, ðI 2 N>0) and if the law of Zk de-

pends smoothly on k then, given I well-chosen real values
ak

i ; i ¼ 1 . . . I, the standard MC estimator EMðZkÞ could be efficiently

replaced by a MC estimator for E Zk �
PI

i¼1ak
i ZkI

i

� �
þ
PI

i¼1ak
i E ZkI

i

� �
that is as accurate and uses much less than M copies of Zk.

In other words, if for some ak2

i ði ¼ 1 . . . IÞ the random variable

Ŷk ¼
XI

i¼1

ak
i ZkI

i � E ZkI
i

� �� �
ð2:2Þ

is correlated with Zk (eq. Zk � EðZkÞ) such that the control of Zk by Ŷk

reduces the variance, that is if

VðZkÞ :¼
Z

Zk � EðZkÞ
�� ��2dP P V Zk � Ŷk

� �
;

then the confidence intervals of MC estimations

EM Zk � Ŷk
� �

:¼
XM

m¼1

Zk
m � Ŷk

m

M
!P�a:s:

M!1
E Zk
� �

ð2:3Þ

with asymptotic probabilities erf a ða > 0Þ converge faster with re-
spect to the number M of realizations than the confidence intervals
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