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a b s t r a c t

Structural Health Monitoring (SHM) applications call for both efficient and powerful numerical tools to
predict the behavior of ultrasonic guided waves. When considering waves in thin-walled structures, so
called Lamb waves, conventional linear or quadratic pure displacement finite elements soon reach their
limits. The spatial as well as temporal discretisation, required to obtain good quality results has to be very
fine. This results in enormous computational costs (computational time and memory storage require-
ments) when ultrasonic wave propagation problems are solved in the time domain. To resolve this issue
several higher order finite element methods with polynomial degrees p > 2 are proposed. The objective
of the current article is to develop such higher order schemes and to verify their capabilities with respect
to accuracy and numerical performance. To the best of the authors’ knowledge such comparison has not
been reported in literature, yet. Specifically, spectral elements based on Lagarange polynomials (SEM), p-
elements using the normalized integrals of the Legendre polynomials (p-FEM) and isogeometric elements
utilizing non-uniform rational B-splines (NURBS, N-FEM) are discussed in this paper. By solving a
two-dimensional benchmark problem, their advantages and drawbacks with respect to Lamb wave prop-
agation are highlighted. The results of the convergence studies are then used to derive guidelines for esti-
mating the optimal element size for a given finite element type and polynomial degree template. These
findings serve the purpose to determine the optimal mesh configuration a priori and thus, save a consid-
erable amount of computational effort. The proposed guideline is then tested on a three-dimensional
structure with a conical hole showing an excellent agreement with the predicted behaviour.

� 2012 Elsevier B.V. All rights reserved.

1. Introduction

The application of elastic guided waves to inspect structures has
a long history, and is nowadays widely employed for online mon-
itoring purposes ([1,2]). In 1917 Horace Lamb mathematically pre-
dicted a special type of these waves occurring in thin-walled
designs [3]. Named after its discoverer, Lamb waves refer to elastic
perturbations propagating in elastic solid plates (or layers) with
free boundaries. The direction of the displacements is both parallel
to the midplane of the plate and perpendicular to it [4]. Two basic
types of Lamb wave modes can be distinguished in an homoge-
nous, isotropic plate, namely symmetric and anti-symmetric ones.
For each excitation frequency a number of propagating modes ex-
ists. They correspond to the solution of the mathematical model
description of Lambs problem [2]. Both modes of these waves are
highly dispersive [5] and can furthermore convert into each other
[6]. Despite their complex propagation characteristics there are
certain properties which make them interesting for SHM applica-

tions and account for their wide spread use. Firstly, their small
wavelengths, in a higher frequency range, and secondly, only a
slight loss of amplitude magnitude make them very popular for on-
line monitoring applications. Small wavelengths are required to
ensure the interaction of Lamb waves with structural damages, like
cracks or flaws. The geometrical attenuation is only proportional to
1=

ffiffiffi
r
p

[7], where r is the travelled distance from the source. As a
consequence Lamb wave based damage detection devices are a
very attractive and a common choice for SHM systems [8].

The simulation of ultrasonic Lamb wave propagation is a highly
demanding task from a computational point of view. It requires
both a fine temporal [9] and spatial [10,11] discretization to cap-
ture the different wave modes. In this regard analytical methods
[12], semi-analytical and wave finite element methods (SAFE,
WFE) [5,13–15] offer fast and accurate results. Therefore, they
are frequently used to calculate dispersion diagrams. But these
methods are not able to analyse complex three-dimensional geom-
etries and arbitrary perturbations of the waveguide. The wave
propagation in structures containing failures, such as delamina-
tions, cracks or other defects, are hard to be described analytically.
Also the WFE-approach, which is more flexible as the SAFE-meth-
od, requires a periodic structure to be employable [5].
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Furthermore, these methods are numerically more expensive if the
global behaviour of the structure is to be analysed, as the compu-
tational effort per degree-of-freedom is higher compared to
conventional FEM [16].

An extension of semi-analytical finite element methods has
been published by Gopalakrishnan et al. [17,18]. This approach
can be thought of as finite element method formulated in the fre-
quency domain. While linear wave analysis of simple geometries is
shown to be solved very efficiently even for the higher order
modes, non-linear effects like the contact between debonded sur-
faces and delaminations cannot be treated, since the problem is
solved in frequency domain – Fast Fourier transform (FFT) is only
viable for linear systems. Moreover, if transient time-domain solu-
tions are wanted the calculation time increases significantly in or-
der to avoid wrap around errors [16].

Considering problems dealing with three-dimensional, complex
geometries it is in general inevitable to implement discretization
techniques in all three spatial directions and also in time. When
dealing with thin-walled structures a natural approach is to deploy
finite shell elements to discretize the model. This type of finite ele-
ments is founded on a dimensionally reduced theory and has
numerical advantages when thin-walled component parts are to
be examined. Approaches of this kind have been proposed by Osta-
chowicz et al. [19–21] and Fritzen et al. [22,23]. Since the variation
of the displacement field over the thickness of the structure is ne-
glected, the symmetric Lamb wave modes cannot be resolved.
Additionally, they have the drawback that multi-layered materials
and complex three-dimensional stress states arising at welded
joints or rivets, for example cannot be captured easily. Hence, ap-
proaches based on utilizing higher order shell finite elements
[19,24–26] are also not suitable if all observed phenomena are to
be captured.

While certain representatives of three-dimensional approaches
like the local interaction simulation approach (LISA) by Lee and
Staszewski [27] or the mass-spring lattice model (MSLM) by Yim
and Sohn [28] are also confined to non-complex geometries, finite
element methods (FEM) in general offer a broader variety of appli-
cations and are not limited to special assumptions, such as e.g.
material parameters or geometrical regularities. Since the conver-
gence rate of conventional lower order FEM formulations (h-FEM)
is rather low, also when dealing with Lamb wave propagation
problems, in recent years the focus of research has shifted to the
implementation of high-order shape functions. In the literature a
large variety of higher order shape-functions has been proposed,
such as the Lagrange-polynomials on the Gauss–Lobatto-Legendre
grid also referred to as Spectral Element Method (SEM) in the time-
domain [29,21,30] (the term SEM is used according to Ostachowicz
et al. [26]), the normalized integrals of the Legendre-polynomials
resulting in the hierarchical p-FEM [31–35], and the application of
Non-Uniform Rational B-Splines (NURBS) termed N-FEM [36–38].
Heretofore, the SEM has been used almost exclusively for high fre-
quency wave propagation problems, and the other two mentioned
approaches have been principally utilized for static problems
including non-linear analyses, plasticity etc.

Since our goal is to describe the Lamb wave behavior in arbi-
trary geometries while confining the computational costs to a real-
izable extent, in our opinion only the higher order finite element
methods are a recommendable choice. The mutual benefits and
drawbacks of the SEM, p-FEM and N-FEM regarding the application
to Lamb wave propagation problems have to the best of our knowl-
edge not been analysed so far. Consequently the objective of this
paper is to give a quantitative comparison of these methods in
the time domain. The benchmark problem is a two-dimensional
Lamb wave propagation in an isotropic plate. This example has
been chosen as an analytical solution is given in the literature
[2]. The intention of this benchmark is the characterization of the

convergence properties and the numerical effort of the three
proposed higher order finite element approaches. This enables
the user to quantify the performance and the accuracy of these
methods in analyzing Lamb wave propagation problems for SHM
applications. While different spatial discretization techniques are
tested, the same time integration scheme is applied to all analyzed
cases, ensuring a good comparability of the results. Hence, the
computational times are not directly evaluated, since the applied
time-integration scheme is not necessarily best suited for each of
the analysed finite element approaches. On this account, we com-
pare the degrees-of-freedom required to achieve a certain level of
accuracy, by the different approaches. In addition, the number of
non-zero elements in the system matrices are examined, measur-
ing the memory storage requirements of each method.

The paper is divided into three main parts. In the first part the
main principles of the finite element method and the analysed
shape function types, namely the Lagrange polynomials, the nor-
malized integrals of the Legendre polynomials and the NURBS
are introduced. Then, the model setup is described and the results
of the convergence study are interpreted and discussed. To this
end, optimal discretization schemes for the three higher order
FE-approaches are proposed. These schemes are applied to a
three-dimensional problem for verification reasons. Finally, the pa-
per is concluded and an outlook to future research activities is
given.

2. Finite element equations

The basis of the finite element developments is the variational
formulation corresponding to Naviers equations, namely Hamiltons
principle. It states that the motion of the system within the time
interval ½t1; t2� is such, that under infinitesimal variation of the dis-
placements the Hamiltonian action S vanishes, meaning that the
motion of the system takes the path of the stationary action [39]

dS ¼ d
Z t2

t1

LþWð Þdt ¼ 0: ð1Þ

Here L represents the Lagrangian function, and W the work done by
the external forces. The Lagrangian is the sum of the kinetic energy
and the potential strain energy. After some calculus and the substi-
tution of Hookes law into Eq. (1), we obtain

0 ¼ �
Z

V
qduT €uþ deT Ce
� �

dV|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
dL

þ
Z

V
duT FV dVþ

Z
S1

duT FS1 dS1 þ
Xn

i¼1
duT

i Fi|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
dW

; ð2Þ

where q is the mass density, e and r are the vectors of mechanical
strains and stresses in Voigt-notation, respectively [40]. C denotes
the elasticity matrix and €u represents the acceleration vector. The
displacement field uðx; tÞ is approximated by the product of the
space-dependent shape function matrix NðxÞ and a time-dependent
vector of unknowns UðtÞ,

uðx; tÞ ¼ NðxÞUðtÞ: ð3Þ

The mechanical strain is defined as

e ¼ DNU ¼ BU; ð4Þ

introducing the strain–displacement matrix B ¼ DN, where D is a
linear differential operator relating strains and displacements. With
the aid of Eq. (2), (4) and (3) the reasoning that Hamiltons principle
has to be satisfied for all variations du ¼ NdU we obtain the well
known system of equations, describing the motion of a body
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