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This paper presents a method for the linear analysis of the stiffness and strength of open and closed cell
lattices with arbitrary topology. The method hinges on a multiscale approach that separates the analysis
of the lattice in two scales. At the macroscopic level, the lattice is considered as a uniform material; at the
microscopic scale, on the other hand, the cell microstructure is modelled in detail by means of an in-
house finite element solver. The method allows determine the macroscopic stiffness, the internal forces
in the edges and walls of the lattice, as well as the global periodic buckling loads, along with their buck-
ling modes. Four cube-based lattices and nine cell topologies derived by Archimedean polyhedra are
studied. Several of them are characterized here for the first time with a particular attention on the role
that the cell wall plays on the stiffness and strength properties. The method, automated in a computa-
tional routine, has been used to develop material property charts that help to gain insight into the per-
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formance of the lattices under investigation.
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1. Introduction

Lattices are regular structures obtained by tessellating a unit
cell along independent periodic vectors. A lattice can be tailored
by design to obtain unprecedented mechanical properties and ac-
cess unexplored areas of the material property space [4,3,14,2]. Re-
cent manufacturing techniques enable to build complex lattice
components at the micrometer length scale with high accuracy,
acceptable costs [7,29], and from a variety of solid materials,
including metal alloys, polymers, glass and silicon rubbers.

The microscopic characteristics of a lattice component govern
its macroscopic behaviour. When the scale of the component is sig-
nificantly larger than the scale of the lattice, a direct approach
involving the modelling of each cell is impractical. This strategy
would result in considerably large models, which are likely unfea-
sible to manage. On the other hand, an appropriate alternative is
the substitution of the discrete model with an equivalent contin-
uum [25]. At the cost of loosing minor local details, this approach
permits a substantial reduction of the computational effort, while
still providing high accurate results.

In literature, there exist several methods to model the macro-
scopic properties of lattice materials. A force-based approach has
been often applied to the unit cell of a lattice subjected to a multi-
axial load. The elastic constants of the lattice have then been deter-
mined by solving each equilibrium problem individually. For
example, Gibson et al. [15] obtained a first order estimate of the
in-plane stiffness of hexagonal honeycombs, by assuming the
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lattice edges behave as Bernoulli beams. Warren and Kraynik
[37] examined hexagonal lattices with non-constant edge thick-
ness and modelled lattice edges as continua under plane stress.
Zhu et al. [38] and Gong et al. [18] expressed the Young’s modulus
and the Poisson’s ratio of open cell tetrakaidecahedral foams as a
function of the relative density. For this cell topology, Ohno et al.
[26] derived the buckling and yielding strength under uniaxial
compression. Among other cell topologies, pin-jointed fully trian-
gulated lattices have attracted a remarkable interest for their
excellent structural properties. Deshpande et al. [10] studied in de-
tail the performance of the regular-octet lattice, and derived the
lattice stiffness, and the von Mises surfaces for buckling and yield-
ing. Elsayed and Pasini [13] applied shape transformers [27] to
study the effect of the edge cross section on the stiffness and
strength of columns made out of octet lattices. Wallach and Gibson
[35] analysed a lattice based on tetrahedral units, and evaluated
the effect of the cell aspect ratios on the stiffness, and on the buck-
ling strength of alternative lattice. Wang and McDowell [36]
calculated the in-plane stiffness and strength of a selected bidi-
mensional cell topologies, with respect to the onset of plastic
yielding.

Other works proposed a more general analysis of the mechanics
of lattices based on topology optimization. Bendsoe and Kikuchi
[6], and later Hassani and Hinton [19], for example, derived a con-
stitutive model for porous materials considering an elementary
unit cell of size €, with € — 0. The virtual work principle was first
applied to determine the deformation energy of the unit cell. The
effective stiffness of the porous material was then obtained as
the average, over the unit cell volume, of the stiffness of the solid
material, weighted by the unit cell deformation energy.
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The interest in vibration reduction and bandgaps has motivated
the search for other approaches [23,28]. The following can be
loosely specified as procedural steps of these methods. (i) A dis-
placement model is first proposed to approximate the displace-
ments of the continuous medium within the unit cell; (ii)
physical quantities of interest, such as natural frequency, stiffness,
and strain energy, are calculated for the discrete lattice; (iii) the
parameters of the continuous model are then determined by
equating the relevant quantities of the discrete to those of the uni-
form model. While a Taylor series expansion is generally used to
approximate the continuous displacement, the various methods
might differ for the quantities to be equated in the models. For
example, Kumar and McDowell [22] selected the Cosserat descrip-
tion of the continuum to take into account the node rotations and
the bending of the lattice elements. A second order Taylor series
expansion was used for the displacements, and the coefficients of
the equivalent micropolar continuum were found by comparing
the expressions of the strain energy for the discrete lattice to those
of the continuous medium. The suitability of the method was
restricted to cell topologies with a single internal joint. Gonella
and Ruzzene [16] studied the in-plane properties of hexagonal
and auxetic lattices and derived the parameters of the equivalent
continuum by comparing the coefficients of the in-plane wave
equations of a discrete lattice to those of an equivalent continuum
model. Suiker et al. [31] derived the parameters of a micropolar
continuum considering the dispersion relations of harmonic
waves. In both studies, a continuous model was used and provided
a satisfactory approximation of the properties of the discrete lat-
tice only for wavelengths longer than six times the dimension of
the unit cell. For shorter wavelengths, local effects could not be
captured. Gonella and Ruzzene [17] recently observed that the
use of the Taylor series approximation at short wavelength is the
main culprit for the poor accuracy of the continuous model. Since
it is not possible to increase the order of the expansion, which is
limited by the number of boundary conditions that can be im-
posed, the authors proposed a representative volume element
(RVE) made of multiple unit cells. Likewise with the aim of increas-
ing the accuracy of the continuous model in capturing the local
effects of wave propagation, Lombardo and Askes [24] presented
an approach based on a higher order approximation of the inertia
terms only.

More recent works resorts to the application of concepts of
crystals’ theory. Hutchinson and Fleck [20] proposed a method
based on the Bloch theorem for the statement of the equilibrium
problem over an infinite lattice, and relied on the Cauchy-Born
assumption to interpolate the displacement in the unit cell. The
method was applied to estimate the stiffness of the Kagome and
the triangular-triangular lattice. The existence of inextensional
periodic collapse modes was observed for the Kagome lattice, a
stretching dominated material. Elsayed and Pasini [11] extended
this approach to the analysis of more generic bidimensional
stretching dominated lattices. Vigliotti and Pasini [34] presented
a matrix based method for the analysis of arbitrary bidimensional
stretching and bending dominated lattices.

Works available in the literature are mainly focused on the eval-
uation of the lattice stiffness for pin-jointed open cell configura-
tions. This paper presents a general procedure for the linear
analysis of both open and closed cell three-dimensional lattices
of arbitrary topology with either pin and rigid joints. The method
hinges on a multiscale approach and makes no assumption on
the displacements of the internal points of the unit cell; rather
the change in the microscopic periodic directions is expressed as
a function of the macroscopic strain filed, and the displacements
of the deformed lattice are obtained by imposing equilibrium con-
ditions. Besides stiffness, the procedure also permits the assess-
ment of the strength of an arbitrary-cell lattice, with respect to

both buckling and plastic yielding. Global buckling load and buck-
ling modes are estimated by solving a generalized eigenvalue prob-
lem for the unit cell with prescribed periodic boundary conditions.
The method is here applied to characterize the properties of 3D
lattice topologies. Some topologies have been characterized here
for the first time. In addition, since the method is based on the
evaluation of the lattice strain energy by means of a finite element
model of the unit cell, it can be extended to account for the effect of
geometric and material non linearity. The method can also be
applied recursively to analyse a component with multiple hierar-
chic levels of lattice structure.

The paper is structured as follows. First the multiscale approach
is described in its general aspects in Section 2. In Section 3, the
method for the lattice analysis is explained in detail. Section 4 ap-
plies the procedure for a comprehensive analysis of four lattice
topologies based on the cubic unit cell. Here are given closed-form
expressions of the stiffness and internal forces on lattice elements.
The results of the analysis of the cubic-based topologies, and of
nine lattices obtained from Archimedean solids, are finally used
to develop material charts. A discussion comparing stiffness and
strength properties of the lattices under investigation is given in
Section 5, before the conclusion.

2. The multiscale approach

Structures built of lattice materials generally present at least
two distinct length scales: the scale of the component, at the mac-
roscopic level, and the scale of the unit cell, at the micro-level.
Here, we formulate a comprehensive model consisting of two
nested structural models. At the macroscopic level, the stiffness
of the lattice component is determined by assuming the lattice
material as a uniform continuum. At the microscopic level, we cal-
culate the lattice stiffness and the internal forces in each lattice
element, both essential for the analysis of the lattice strength.

The virtual work principle requires to equate the variation of the
potential energy of the external forces to the variation of the strain
energy, calculated through the constitutive relation of the material.
For uniform materials, a functional relation exists between the
stress and strain tensors and it reduces to the material stiffness
matrix for the linear case. For lattice materials, since the relation de-
pends on the properties of the lattice, it cannot be expressed directly
as a functional dependence. Yet, a boundary value problem can be
formulated to calculate the lattice strain energy and to express it
as a function of the macroscopic strain. Fig. 1 summarizes the steps
of the multiscale scheme, which is largely based on the work by
Kouznetsova et al. [21]. At the component level (1,2), given the mac-
roscopic displacements, uy, we determine the components of the
Cauchy strain tensor, €y, and the deformed lattice periodic vectors,
a;; the micro-displacements of the unit cell nodes are expressed as a
function of the macroscopic strain (3); the micro-stress of the
uniform solid material is obtained via the Hooke’s law (4); the mi-
cro-deformation work is calculated by means of a finite element
model of the unit cell (5); the macro-stress tensor is calculated as
the gradient of the strain energy density with respect to the macro-
scopic strain (6); macro-forces are obtained applying the virtual
work principle at the macroscopic level (7,8).

Two conditions are imposed to define the equilibrium problem
of the unit cell: a kinematic condition to preserve the periodicity of
the unit cell boundaries; a static condition to ensure the equilib-
rium of the confining cells. The formulation enables the analysis
of a lattice with arbitrary cell topology and any number of either
pin or rigid joints both on the boundary and interior of the unit cell.
Once the equilibrium of the unit cell has been solved, the deforma-
tion work and the forces in the cell elements can be determined as
a function of the macroscopic strain tensor.
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