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a b s t r a c t

Modeling large systems usually requires metamodels or response surfaces (RSs) of sub-systems. These
metamodels are using sampling points in a parameter domain and related responses provided by the
solution of parametric partial differential equations (PDEs). Between sampling points the responses are
interpolated. We propose to incorporate the RS approximation into the weak form of parametric partial
differential equations (PDEs). Hence a multidimensional model-reduction can be achieved. RSs provide
very fast predictions. But their enrichment, by adding new sampling points, requires new response eval-
uations, and therefore new solutions of PDEs. Although it is off-line computations, their complexity does
not facilitates the study of large-scale non-linear problems involving a large number of parameters.
Reduced-order models can facilitate the solution of the PDEs used to enrich the RSs. We propose a mul-
tidimensional a priori model-reduction method to generate or to enrich RSs. It is coined multidimensional
because the fields to forecast are defined over an augmented domain in terms of dimension. They are
functions of both space variables and parameters that simultaneously evolve in time. This changes the
functional space related to the weak form of the PDEs and the definition of the reduced-bases. It has a
significant impact on the proposed model-reduction method. In particular, the variable interpolation in
the framework of reduced-basis approximations has to be reconsidered. Moreover, a multidimensional
reduced integration domain (MRID) is proposed to reduce the complexity of the reduced formulation.
It is a subdomain of the full multidimensional domain. The multidimensional hyper-reduction method
extracts from the MRID truncated equilibrium equations, truncated residuals and a truncated error indi-
cator. This work is an extension of the a priori hyper-reduction (APHR) method to parametric PDEs cou-
pled to a design of experiments (DOE) method. In this paper, the outputs of the metamodels are the
elastic stiffness and the damping coefficient of non-linear mechanical sub-systems that could be incorpo-
rated in the model of aircrafts or cars subjected to vibrations. The proposed method has been designed to
account for various recent and ongoing research on mathematical formulation of mechanical constitutive
equations in material science. Here, we are using a constitutive model proposed by Qi and Boyce for poly-
mers.

The three following issues are addressed: Is the multidimensional APHR method more efficient than
the APHR method applied individually on separated simulations? What is the efficiency of the proposed
approach when adding sampling points in the current parameter domain? What is the efficiency of the
method when adding a new dimension to the parameter domain, i.e. when adding a new parameter to
enrich a former parametric study?

� 2012 Elsevier B.V. All rights reserved.

1. Introduction

In the field of large-scale system structural-dynamics, substitut-
ing complex non-linear models of sub-systems by meta-models, or
response surfaces (RSs) should make the numerical simulations
easier and faster ([1,2]). The response surface methodology aims
to model an unknown relation between inputs l and outputs s(l)

by a metamodel sRS l; flpg
P
p¼1; fsðlpÞg

P
p¼1

� �
. Here l is a vector of

parameters. We denote by D the parametric domain such that:
l 2 D � RQ. The metamodel is defined by a set of sampling points
denoted by FD, FD ¼ flpg

P
p¼1, and the related responses. Usually

sRS is based on an interpolation technique. Various interpolation
functions are available. They are denoted by np. For instance it can
be polynomial functions, moving least-squares interpolation func-
tions or radial basis functions. The interpolation of responses reads:

sRSðl; flpg
P
p¼1; fsðlpÞg

P
p¼1Þ ¼

PP
p¼1

npðlÞsðlpÞ 8l 2 D: ð1Þ
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Most of the time, a large number of expensive simulations is re-
quired to provide the set of responses fsðlpÞg

P
p¼1. In case of full fac-

torial sampling, P grows exponentially with respect to the
dimension of D. This exponential growth is often mentioned as
the curse of dimensionality. Convenient sampling points are pro-
vided by design of experiments (DOE) methods. The Monte Carlo
sampling, the Latin hypercube sampling, the moving least-squares
metamodels and the Kriging method are very popular. In this paper,
the responses of interest are extracted from the solution of physi-
cally-based differential equations. This extraction procedure reads:

sðlÞ ¼ ‘ðu;a; lÞ: ð2Þ

Here, u is a displacement field, a is a field of internal variables
(more details are given below) and l is a vector of model parame-
ters. u and a are functions of space variable and time variables, and
their dependence on l has to be enlightened. We assume that the
interpolation functions fnpgPp¼1 are relevant to approximate the vari-
ables u and a between sampling points. The response-surface
approximation reads:

uRSðx;l; tÞ ¼
PP
p¼1

npðlÞuðx;lp; tÞ; x 2 X l 2 D t 2�0; T�; ð3Þ

aRSðx;l; tÞ ¼
PP
p¼1

npðlÞaðx;lp; tÞ; x 2 X l 2 D t 2�0; T�: ð4Þ

Here, x and X are respectively the spatial variable and the spatial
domain, t is the time variable; T is the last time of the time interval.

We propose a multidimensional-APHR method that accounts for
this approximation to generate the solutions of the PDEs required to
forecast the sampling-point responses fsðlpÞg

P
p¼1. As proposed in

[3] the parameters are considered as additional coordinates, as if
the responses were defined with coupled PDEs, although the PDEs
related to two different vectors of parameters are not coupled. This
paper focuses on the off-line simulations that provide f‘ðu;
a; lpÞg

P
p¼1. The proposed method is an a priori reduction method

involving both partial residual-estimations and an interpolation
technique defined over the parametric domain. To highlight the
added value of the proposed method we recall how, in the existing
approaches, (i) the parameters are taken into account when doing
reduced order modeling, (ii) how the main salient feature of the
state evolutions can be discovered by a priori model reduction
methods and the PGD method, and (iii) and why the full residual-
estimation must be avoided in case of non-linear problems.

Model-reduction methods aim to propose alternative ap-
proaches to the P high-fidelity simulations, such as finite-element
simulations, involved in the prediction of the responses
f‘ðu;a;lpÞg

P
p¼1. They reduce the dimension of the functional space

of the high-fidelity model, and a reduction of the computational
complexity is expected. Usually, a reduced-basis approximation
has the following form:

uðx;l; tÞ ¼ uoðx;l; tÞ þ
PN
k¼1

/kðxÞukðt;lÞ;

x 2 X l 2 D t 2�0; T�; ð5Þ

/kðxÞ ¼
PN
i¼1

NiðxÞAik; k ¼ 1; . . . ;N: ð6Þ

Here uo is a given parametrized field related to a Dirichlet boundary
condition u = uc prescribed over a part @uX of the boundary of the
spatial domain. fNigNi¼1 are the shape functions of the finite-element
model which is considered to be the high-fidelity model. Aik for
i ¼ 1 . . .N and j = 1 . . .N are the matrix entries of the matrix A. This
matrix is termed reduction matrix. f/kg

N
k¼1 are the vectors of the re-

duced-basis. fukg
N
k¼1 are the reduced state variables. Here, the vec-

tor of parameters plays a role similar to the time variable: if a
unique core is used to perform the simulations, the responses are

evaluated one after another by a sequential approach (obviously
the reduced equations for the different parameter values can also
be solved in parallel, but parallel computing is a specific topic that
is not an issue of this paper). Although the set of sampling points
can be optimal in order to capture the response-surface variations,
remaining common salient features among the forecasted state
variables u and a make reduced-order models efficient for the
approximate solution of the physically-based equations.

In the scientific literature, many authors proposed to replace
some finite-element simulations by reduced-order simulations in
the framework of parametrized evaluation problems. In non-linear
mechanics, the proper orthogonal decomposition (POD) [4,5] and
the snapshot POD [6] are the foremost methods used to extract a
reduced basis (RB) from a set of fields (displacement fields or
velocity fields) provided by simulations using classical approxima-
tion methods (i.e. finite-element method, backward Euler scheme,
Runge–Kutta time integrators, . . .). Given a POD reduced basis, a
POD-Galerkin formulation can be introduced to state a reduced
form of the weak formulation of the differential equations, as pro-
posed in [7]. When solving the Navier–Stokes equations by using
POD approximations, the stability of the method can to be im-
proved by a Petrov–Galerkin formulation as proposed in [8,9].
The POD and the snapshot POD method proposed in [6,7] are a pos-
teriori approaches. High-fidelity simulations (i.e. full-basis simula-
tions) have to be performed prior to constructing a RB. The POD
and the snapshot POD methods aim to extract the salient features
of various predictions to create the RB. The accuracy of the POD RB
depends both on: (1) the basis truncation related to the POD
method, and (2) the similarity of the training trajectories to the
high-fidelity trajectories that will be approximated by the re-
duced-order model during the deployed stage. Therefore, a trust-
region framework has been introduced in [10–12] to avoid undue
use of approximate simulations instead of the full-basis simula-
tions. It turns out that RB can differ between points of the param-
eter domain. In most cases, the best reduced basis of fixed
dimension is input-parameter-dependent, especially when its
dimension is low. Various interpolation methods have been pro-
posed, the direct interpolation of RB in [13], the subspace angle
interpolation method in [14] and methods based manifolds
[15,16]. Therefore, the reduced-basis approximation reads:

uðx;l; tÞ ¼ uoðx;l; tÞ þ
PN
k¼1

/kðx;lÞukðt;lÞ;

x 2 X l 2 D t 2�0; T�; ð7Þ

/kðx;lÞ ¼
PN
i¼1

NiðxÞAikðlÞ; k ¼ 1; . . . ;N: ð8Þ

The interpolation methods enable to update RB according to
parameter variations but they do not really answer to the question
regarding the adaptivity by considering error estimators. They pro-
vide multifidelity models, accuracy and efficiency of which are in-
between the response surface model and the high-fidelity model.
But these methods do not match the expectation to discover the
salient feature of the responses during the solution of the underlin-
ing physically-based equations.

The aforementioned reduction methods are a posteriori methods
because they require preliminary high-fidelity simulations that
provide snapshots related to given sampling points in �0; T� � D.
Unfortunately, the accuracy of the reduced-order model depends
on the relevance of the sampling points. A priori model-reduction
methods create a reduced representation during the solution of
the differential equations. The accuracy of the reduced-approxima-
tion provided by a priori reduction methods is not affected by the
initial choice of sampling points. During the approximate solution
of the differential equations, the reduced-approximation is adapted
according to an error estimator, or an error indicator having a less
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