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Large geophysical flows often encompass both coarse and highly resolved regions. Approximating these
flows using shock-capturing methods with explicit time stepping gives rise to a Courant-Friedrichs-Lewy
(CFL) time step constraint. Even if the refined regions are sparse, they can restrict the global CFL condition
to very small time steps, vastly increasing computational effort over the whole domain. One method to
cope with this problem is to use locally varying time steps over the domain. These are also referred to as
multi-rate methods in the ODE literature. Ideally, such methods must be conservative, accurate and easy
to implement. In this study, we derive a second-order, local time stepping procedure within a Runge-
Kutta discontinuous Galerkin (RKDG) framework to solve the shallow water equations. This procedure
is based on previous first-order work of the second author and collaborator Kirby [1-3]. As we are inter-
ested in both coastal and overland flows due to, e.g., rainfall, wetting and drying is incorporated into the
model. Numerical results are shown, which verify the accuracy and efficiency of the approach (compared
to using a globally defined CFL time step), and the application of the method to rainfall-runoff scenarios.
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1. Introduction

The depth-averaged shallow water equations (SWE) are a set of
hyperbolic partial differential equations (under the assumption of
inviscid flow), which describe the flow of an incompressible fluid
where the water depth is much smaller than the horizontal wave-
length. The SWE have been extensively used to study tides, storm
surges and dam breaks, among other applications. Such applica-
tions often give rise to advection-dominant flows, which are noto-
riously difficult to solve numerically. Furthermore, in coastal ocean
applications, complex geometries, such as irregular shorelines,
channels, inlets, and regions with highly varying bathymetry, must
be resolved to accurately capture inland penetration of the flow.
Therefore, shock-capturing methods based on unstructured finite
element discretizations, such as the discontinuous Galerkin (DG)
method, are often applied to the SWE. Discontinuous Galerkin
methods are capable of incorporating special numerical fluxes
and stability post-processing into the solution to model highly
advective flows without excessive oscillations. These methods
are also locally conservative, so that the continuity equation is
weakly conserved element by element. Additionally, DG methods
are highly parallel and allow for locally varying polynomial orders.
An extensive review of DG methods can be found [4-6].
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Because our interests include both coastal ocean and overland
flow, there is often a natural scale separation, due to the need to
resolve small channels or inlets, or, for example, when rainfall oc-
curs. For example, in sufficiently deep, quiescent regions with no
rainfall, elements may be quite large, however, overland areas with
rainfall must be highly resolved, since rain may cover a relatively
small portion of the total domain, and interesting runoff regions
(i.e. watersheds, etc.) must be included. Efficiently handling such
multi-scale problems is difficult. It is well known that for explicit
time-discretization, the time step must satisfy a CFL condition to
ensure numerical stability. From a global perspective, the time step
calculated from the CFL is partially governed by the size of the
smallest element. Element sizes in our applications may vary sig-
nificantly over the domain, resulting in “over-calculations” in re-
gions where the local CFL time step is much larger than the
global CFL time step. Additionally, local spatial refinement is often
required to efficiently solve for evolving fronts, density sources,
etc. Upon refining, the global time step must either change as the
grid is refined or be initially chosen small enough so as to ensure
CFL stability to a minimum allowed element size. In either case,
the global CFL is again governed by the refined region, leading to
inefficient calculations. The most obvious way to efficiently deal
with largely varying element sizes is to allow for a spatially varying
time step, where the step-size is dependent on the locally varying
CFL condition. Such methods have been previously derived and ap-
plied to conservation laws by Sanders, Dawson, Kirby and Osher
[1-3,7]. This procedure was previously applied to the shallow
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water equations by Sanders [8]. In its simplest form, this procedure
allows for one region of the finite element domain to have a time
step M times larger than another, where M is some positive integer.

We also note the similarity of our approach with multi-rate
methods and adaptive mesh refinement (AMR) methods. The
AMR methods used in the GeoClaw software [9,10] have been ap-
plied to the SWE. The method uses forward Euler time stepping
with time steps dictated by local CFL constraints on each refine-
ment patch. The fluxes at the interfaces between levels are con-
served in the same way described here and in [7]. The multi-rate
methods described in [11] are shown to preserve second order
accuracy and the TVD property. In this paper, we also focus on sec-
ond order (linear) spatial approximations and second order,
strong-stability-preserving time stepping in the RKDG framework.
However, the method described here differs from the multi-rate
approach in [11] several respects. The multi-rate method allows
for time steps to vary by an integral factor (M) between regions,
but requires a buffer region of size M to handle the transition. Since
our domains and finite element meshes may be highly irregular
and complex, we choose to essentially ignore the buffer region,
while still allowing for time steps to vary by a factor of M between
regions. While this is not provably second order accurate, we argue
that the method is formally ¢(h® + At?) away from the local-time
stepping interface, where h is the mesh size and At is the time step.
At the interface, the method reduces to ¢(At), however, the size of
the interface in any practical application is also quite small; i.e.,
O(h). Therefore, while there may be some theoretical loss of accu-
racy due to local time stepping, our numerical results show virtu-
ally no loss of accuracy due to local time stepping, when compared
to using a globally defined CFL time step.

This paper is arranged as follows. In Section 2, we present the
shallow water mathematical model considered in this paper. This
model includes the addition of water due to rainfall and the subse-
quent overland flow induced by rainfall-runoff. The numerical dis-
cretization is described in Section 3. The local time stepping
method is outlined in this section. In Section 4, several numerical
tests are given, which examine the accuracy of the local time step-
ping method. These include a verification run with an analytic
solution, an idealized inlet, and three rainfall examples. The first
rainfall example, known as the Iwagaki test case, is meant to vali-
date the addition of rainfall to the model. The second two rainfall
examples test the rainfall-runoff capabilities of the model with
and without local time stepping.

2. Theory

The SWE are based on the three-dimensional Reynold’s aver-
aged Navier-Stokes equations for a Newtonian fluid. Averaging
these equations over the vertical depth of the water, H, and apply-
ing kinematic and no-flow boundary conditions at the top and the
bottom, gives rise to the conservative form of the SWE:
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where u and v are depth-average velocities, ¢ is the water elevation
relative to the geoid, #=H — ¢ is the bathymetry relative to the
geoid, R is a source/sink term, which could model rainfall and/or
evaporation, g is gravitational acceleration, Fy, are external forces
(i.e. coriolis, tidal) and {‘L’f;_y, rﬂ_y} are the surface (i.e. wind, wave)
and bed stresses, respectively.” To arrive at these equations, a

number of assumptions have been made; (1) the vertical accelera-
tion of a fluid particle is small in comparison to the acceleration
of gravity, (2) shear stresses due to the vertical velocity are small
and (3) the horizontal shear terms, {0%u/ox? 8%u/dy?,0%v|0x?,6*v/
0y?} are small compared to vertical shears, {6%u/dz?,6%v|0z%}.

For closure, the bed stress terms must be parameterized via the
depth-averaged velocities. The bed stress is often approximated by
linear or quadratic functions of the velocities, however, we have
used a hybrid form proposed by Westerink et al. [12], which varies
the bottom-friction coefficient with the water column depth:
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This formulation applies a depth-dependent, Manning-type friction
law below the break depth (Hpeqk) and a standard Chezy friction
law when the depth is greater than the break depth. For the appli-
cations below, Cpnin is allowed to vary, since the bed surfaces
change. Typical values for the remaining parameters are Hpeq = 2.0,
fo=10and f,=1.3333.

At the water surface, stresses are induced from the impact of
rain droplets. The effect is a momentum exchange between indi-
vidual rain droplets and the flowing water, causing flow resistance.
Zhang and Cundy [13] utilized the following expressions for sur-
face shear stress due to rainfall:

(4)
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These equations ignore rainfall splashing and are used for all the
rainfall applications described in further sections.

Egs. (1)-(3) using (4)-(7) may be cast as a single vector
equation,
ow;
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with vectors w, F and s defined as
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fori=1,2, and 3, (8)
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3. Numerical methods
3.1. The discontinuous Galerkin finite element method

Hyperbolic equations often exhibit highly advective flows,
which develop into sharp fronts in time. These fronts may create
numerical instabilities and must be aptly dealt with. The discontin-
uous Galerkin method is ideally suited for such flows. Additionally,
the DG method is inherently conservative, easily scalable, handles
complex geometries and can easily incorporate monotonic slope
limiters. An extensive review of DG methods can be found in [4,5].

Consider the hyperbolic equation,
ow
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