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a b s t r a c t

The analysis of structures is affected by uncertainty in the structure’s material properties, geometric
parameters, boundary conditions and applied loads. These uncertainties can be modelled by random
variables and random fields. Amongst the various problems affected by uncertainty, the random eigen-
value problem is specially important when analyzing the dynamic behavior or the buckling of a structure.
The methods that stand out in dealing with the random eigenvalue problem are the perturbation method
and methods based on Monte Carlo Simulation. In the past few years, methods based on Polynomial
Chaos (PC) have been developed for this problem, where each eigenvalue and eigenvector are represented
by a PC expansion. In this paper four variants of a method hybridizing perturbation and PC expansion
approaches are proposed and compared. The methods use Rayleigh quotient, the power method, the
inverse power method and the eigenvalue equation. PC expansions of eigenvalues and eigenvectors are
obtained with the proposed methods. The new methods are applied to the problem of an Euler Bernoulli
beam and a thin plate with stochastic properties.

� 2012 Elsevier B.V. All rights reserved.

1. Introduction

The algebraic eigenvalue problem arises in a variety of fields, for
example, in buckling of columns and shells [1], vibration of elastic
bodies [2] and electromagnetism. Accurate methods to calculate
the eigensolutions of a deterministic matrix have been available
for long (see, for example, [3]), but such is not the case when the
matrix considered is random. When random matrices are consid-
ered, the joint pdf of eigenvalues is only available for some special
random matrix distributions, as the Gaussian Orthogonal Ensemble
[4] and Wishart matrices [5]. Randomness can be introduced in the
system by random parameters (e.g. Young’s modulus, mass density)
and consequently propagated to the system matrices such as the
mass and stiffness matrices. Using the stochastic finite element
method [6], these matrices in turn can be represented by a linear
combination of deterministic matrices, where the coefficients are
random variables [7,8].

Several methods have been developed to solve the algebraic
random eigenvalue problem. Methods dealing with large amounts
of uncertainty are based on Monte Carlo Simulation (MCS). These
strategies are based on ordering the samples depending on the
distance between them and on calculating the eigenvalues of a
sample using the ones of a close sample. This ordering can be based
on algorithms from the traveling salesman problem and space

reduction [9], component mode synthesis [10], or can be done in
a tree-type data structure [11], and the relation between eigen-
values of close samples is obtained using different initialization
strategies for the power method. The start-vector used is the result
from the iteration process of the previous sample. The initialization
strategies and size reduction methods reduce the computational
time of MCS, but for smaller uncertainties, more efficient methods
are available.

Methods that can be applied to small uncertainties are based on
the perturbation method [12]. First applications date from the late
sixties [13,14], and a series of modified methods have been devel-
oped. A comparison of several of these methods is given by Chen
et al. [15]. Other perturbation-based methods use iterations or
linear combination of deterministic and first order derivative of
eigenvectors to deal with larger uncertainties or to allow reanalysis
of structures [16–19]. Other methods available are based on
crossing theory [20], Kronecker product [21], the dimensional
decomposition method [22,23], asymptotic integral method
[24,25], collocation methods [26], the use of interpolations, re-
sponse surface methods and meta-models [27–29] and possibilistic
approaches [30]. Williams [31] used an auxiliary function where the
derivative of the eigenvector equals the eigenvalue multiplied by
the eigenvector.

Several authors have applied Polynomial Chaos (PC) [6]
based methods to the random algebraic eigenvalue problem. A
PC expansion of eigenvalues and eigenvectors was obtained by
Ghosh et al. [32] using MCS for the calculation of the coefficients
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of the expansion. Verhoosel et al. [33] developed an iterative pro-
cedure based on the inverse power method and Rayleigh quotient
to obtain PC expansions of the eigensolutions. Ghanem and Ghosh
[34] substituted eigenvalues and eigenvectors by their PC expan-
sion in the eigenvalue problem. Coefficients were obtained from
the nonlinear problem with the help of a norm equation for the
eigenvectors. A modification of the previous method using enrich-
ment functions was derived by Ghosh and Ghanem [35].

It can be observed that even if research has been carried out both
on the perturbation and PC methods for the random eigenvalue
problem, no method hybridizing both approaches is yet available.
Efficient methods hybridizing PC and other methods have been
proposed for the elliptic problem [36,37], where a reduction of
the size of the linear system to be solved was achieved. The aim
of the present paper is to gain efficiency on the PC algorithms for
random eigenvalue problems through the use of results from the
perturbation method. The outline of the paper is as follows. The
basic theories of the perturbation method and PC are discussed
respectively in Sections 2.1 and 2.2. PC expansion of eigenvalues
is obtained in Section 3 using the Rayleigh quotient where eigen-
vectors are obtained from the perturbation method or from one of
the methods developed to update eigenvectors. Four new methods,
namely reduced spectral power method (RSPM), reduced spectral
inverse power method (RSIPM), reduced spectral constrained coef-
ficients method (RSCCM) and spectral constrained coefficients
method (SCCM) are proposed to update the eigenvectors in Section
4. The four methods allow us to obtain an updated PC expansion of
the eigenvectors and eigenvalues using Rayleigh quotient. A sum-
mary of the proposed methods is given in Section 5. A comparison
of the methods is performed for the problem of a beam with sto-
chastic properties in Section 6 and for a thin plate with stochastic
properties in Section 7.

2. Stochastic Finite Element method for the random eigenvalue
problem

The deterministic eigenvalue problem is given by the equation

AuðjÞ ¼ kðjÞuðjÞ; ð1Þ
where A 2 Rn�n is the system matrix, uðjÞ is the jth eigenvector, kðjÞ is
the corresponding eigenvalue and n is the degrees of freedom of the
system. The system matrix is obtained from the generalized eigen-
value problem KyðjÞ ¼ kðjÞMyðjÞ so that A ¼M�1=2KM�1=2 and
uðjÞ ¼M�1=2yðjÞ. In a dynamic problem, matrix K is the stiffness ma-
trix and M is the mass matrix. The system matrix A is assumed to be
symmetric. Randomness in the matrix A can be introduced by a
parameter (e.g. Young’s modulus) represented by a random field.
The random field can be approximated with a finite set of random
variables using a discretization procedure (see, e.g. [7,38]). For
example, the random field is discretized using the Karhunen–Loève
(KL) expansion [6] and truncated after M terms. Then, the system
matrix A can be approximated by the following KL expansion

A ¼ A0 þ
XM

i¼1

niAi: ð2Þ

Here A0 is the mean of the system matrix and Ai are the matrices
obtained from using the eigenfunctions of the KL expansion in the
Finite Element formulation of A. It is observed that in a more gen-
eral case, the random system matrix A can be approximated using
a set of independent identically distributed random variables
n1; . . . ; nM such that

A ¼
XP

r¼1

CrAr ; ð3Þ

where Cq are a set of P polynomials of increasing order in n1; . . . ; nM

orthogonal with respect to the pdf of the random variables

n1; . . . ; nM . Generally they are chosen from the Wiener–Askey scheme
of polynomials [39], but can be orthogonal with respect to an arbi-
trary probability density function [40]. In the next subsections, the
perturbation method and the PC method are used to approximate
the eigenvalues and eigenvectors of the stochastic system matrix.

2.1. Perturbation method for the random eigenvalue problem

Among the various methods developed to solve the random
eigenvalue problem, the perturbation method is widely used due
to its simplicity and computational efficiency. The different pertur-
bation methods available to analyze the random eigenvalue prob-
lem are based on keeping different number of terms in the Taylor
series expansions. The first order perturbation of the jth eigenvalue
is given by

kðjÞ ¼ kðjÞ0 þ
XM

i¼1

ni
@kðjÞ

@ni
where

@kðjÞ

@ni
¼ uT

j0
@A
@ni

uj0: ð4Þ

For the case of (2), @A=@ni ¼ Ai. Perturbation methods can also be
applied to eigenvectors, and the eigenvalues can then be obtained
using the Rayleigh quotient. This approximation of eigenvalues is
more accurate than the one obtained by directly applying the per-
turbation method via the Taylor series expansions [15]. If kðjÞ0 and
uj0 are the jth deterministic eigenvalue and the corresponding
eigenvector, an expression for the first-order perturbation of the
eigenvector can be given by Hasselman and Hart [14]

uðjÞ ¼ uj0 þ
XM

i¼1

ni
@uðjÞ

@ni
: ð5Þ

The deterministic eigenvectors satisfy the following properties

uT
j0uj0 ¼ 1 and uT

j0
@uðjÞ

@ni
¼ 0: ð6Þ

Different methods have been developed to calculate the derivatives
of the eigenvectors. One of these methods expands the derivative of
eigenvectors as a linear combination of deterministic eigenvectors
[41,13], so that

uji ¼
@uðjÞ

@ni
¼

XN

m¼1;m–j

ajimum0 where ajim ¼
1

kðjÞ0 � kðmÞ0

uT
m0
@A
@ni

uj0: ð7Þ

For the case of (2), @A=@ni ¼ Ai. This equation is used when all
deterministic eigenvectors are calculated. If only a limited number
of eigenvectors were calculated, other methods described by Nelson
[42] could be applied. The case of complex or repeated eigenvalues
is not dealt with here. The perturbation method for such cases is
derived, for example in [43–46]. For the case of repeated eigen-
values, the space corresponding to a given eigenvalue is the space
spanned by its two eigenvectors, so that the proposed methods
would be valid for the eigenvalues that are not repeated but not
for the repeated one. The case of veering of modes is dealt with,
for example in [47,48], and the proposed method does not allow
to deal with this problem.

2.2. Polynomial Chaos approach for the random eigenvalue problem

Uncertainty is represented by a finite set of random variables
fn1; . . . ; nMg defined on the probability space ðN;BN; PnÞ. Any ran-
dom quantity of interest of the system considered is then defined
on this probability space, in particular, eigenvalues and eigenvec-
tors. The eigensolutions are assumed to have finite second-order
moments, and can be represented in the space of square integrable
functions L2ðN; dPnÞ, and a basis of functions Ck in L2ðN; dPnÞ can be
defined. The representations of kðjÞ and uðjÞ on the basis functions
Ck truncated after P terms can be given by
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