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a b s t r a c t

This paper explores the coupling of the perfectly matched layer technique (PML) with the thin layer
method (TLM), the combination of which allows making highly efficient and accurate simulations of lay-
ered half-spaces of infinite depth subjected to arbitrary dynamic sources anywhere. It is shown that with
an appropriate complex stretching of the thickness of the thin-layers, one can assemble a system of layers
which fully absorbs and attenuates waves for any angle of propagation. An extensive set of numerical
experiments show that the TLM + PML performance is clearly superior to that of a standard TLM model
with paraxial boundaries augmented with buffer layers (TLM + PB). This finding strongly suggests that
the proposed combination may in due time constitute the preferred choice for this class of problems.

� 2012 Elsevier B.V. All rights reserved.

1. Introduction

The thin layer method (TLM) is a semi-discrete numerical tech-
nique for the analysis of wave motion in layered media. It consists
of a finite element discretization in the direction of layering com-
bined with closed-form, analytical solutions for the remaining
directions, along which the material properties are assumed to
be constant. Alternatively, one can also analyze wave motion in
one-dimensional waveguides of complicated cross-section—such
as rails—by carrying out discretizations in not just one, but in
two dimensions, and employing analytical solutions for the
remaining third dimension [33], in which case the designation
‘‘thin-tube method’’ might be more appropriate. In general, the
material layers can either be flat (i.e., horizontal layering)
[17,41], or arranged into cylindrical [29] or spherical [30] layers.
Fluid layers [12,26,36,39] and poroelastic layers [7] can also be
considered. All of the previously cited problems belong to the more
general class of partial finite elements (PFEM), in which discretiza-
tions are carried out only within some arbitrary sub-space. This
class encompasses also the finite cell method [40] in which the
medium is discretized in the azimuthal and meridional directions
while the radial direction is handled analytically. An analysis of
the dispersion characteristics of the TLM is given in [31].

Since its inception in the early 1970s [27,28,41], the TLM has
found widespread use in soil dynamics and soil-structure interac-
tion [37,38], non-destructive evaluation methods, seismic source

simulations, wave propagation in waveguides of complex cross-
section, wave propagation in laminated, anisotropic materials
[20], waves in piezoelectric materials [8], heat diffusion in layered
composites [15], consolidation in poroelastic media, solid–fluid
interaction [39], and in many more areas of application. Although
the origin and early development of the TLM technique hark back
to the early 1970s, the designation TLM became common only
since the beginning of the 1990s. Initially, the TLM was limited
to bounded domains such as layers underlain by rigid base (i.e.,
rock) but soon paraxial boundaries (PB) became available which al-
lowed the simulation of infinite domains [14,34,35]. A brief histor-
ical account is given in [30].

On the other hand, the perfectly matched layer (PML) is a
numerical technique used for purposes similar to those of absorb-
ing or transmitting boundaries, namely to suppress undesirable
echoes and reflections of waves in infinite media modeled with
discrete, finite systems. It is based on stretching the space by
means of position-dependent, complex-valued scaling functions
which begin with unit values at the interface or horizon delimiting
the elastic region. The stretching functions then attain progres-
sively larger complex values with distance from this horizon,
which causes the waves within the PML to attenuate exponentially
[16]. It can also be shown that the impedance contrast at the PML
boundary is unity, in which case no reflections take place no mat-
ter what the angle of propagation of the waves entering the PML
region should be.

The PML concept made its debut in the 1990s [4] and because of
its excellent performance found rapid adoption in engineering sci-
ence, especially for electromagnetic wave propagation models cast
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with finite differences. In more recent years, the PML has also been
used widely for problems of elastic wave propagation in both
structural mechanics and in geophysics [3,9,10,13,42]. A good liter-
ature review on the subject can be found in [25].

Technical publications examining various theoretical and math-
ematical aspects of PMLs also abound. Of special relevance and
interest to the material herein is a series of papers on the spectral
properties of PMLs [5,6,11,32], which explore the characteristics of
the eigenvalues of continuous PMLs—i.e., without discretization er-
rors—in the context of electromagnetic waves in the frequency do-
main. It can be shown that the eigenvalues alluded to in those
papers are closely related to the modes of propagation of SH (i.e.,
Love) waves in a layer underlain by an elastic half-space, and thus
some of the findings therein are relevant to the TLM, as will be
seen.

In the ensuing we apply the perfectly matched layer concept to
the thin-layer method. To keep matters simple, we begin with a
homogeneous stratum of complex thickness subjected to out-of-
plane (i.e., anti-plane or SH) loads, define its transformation into
a PML, overlay an elastic layer on top, and finally examine the char-
acteristics and efficiency of the combination in the context of the
TLM technique. We then go on exploring the more complicated
case of SVP waves whose characteristics depend also on Poisson ra-
tio. Finally, we compare the performance of the TLM + PML against
that of the TLM + PB based on conventional paraxial boundaries.

2. Continuous PML for SH waves

Consider a homogeneous, elastic stratum of total depth H sub-
jected to SH waves which propagate with celerity CS. Following
the usual strategy, we convert this stratum into a PML by trans-
forming the vertical coordinate z into its complex, stretched coun-
terpart �z written as

�z ¼ z� iWðzÞ ð1Þ

where W(z) is a function yet to be defined. The usual choice for W(z)
guaranteeing evanescence of waves within the PML is

WðzÞ ¼
Z z

0
wðsÞds 0 6 z 6 H ð2Þ

in which w(s) > 0 is an always positive stretching function. In princi-
ple the shape of w(s) is arbitrary as long as it is continuous and
W(0) < W(H) [6]. However, once the domain is discretized into thin
layers—or for that matter, into finite elements—spurious reflections
take place due to the abrupt, even if small, changes in w(z), so it be-
hooves for this function to increase smoothly with z. A commonly
used stretching function w(z) is [10]

WðzÞ ¼ xo

x
z
H

� �m

ð3Þ

where xo controls the degree of absorption of the wave and m > 0
defines the rate of stretching within the PML. This implies

WðzÞ ¼ xoH
xðmþ 1Þ

z
H

� �mþ1
ð4Þ

which can be written compactly as

WðzÞ ¼ XHfmþ1 ð5aÞ

where

X ¼ x0

xðmþ 1Þ ; f ¼
z
H

ð5bÞ

The stretched vertical coordinate then simplifies to

�z ¼ zð1� iXfmÞ ð6Þ

which implies a total complex depth H ¼ H½1� iX�.

Consider now a plane SH wave traveling at an angle h with re-
spect to the vertical direction z, which we assume here to be posi-
tive downwards and starting from the free surface (Fig. 1). In
stretched space, this wave can be expressed as

uðx;�z; tÞ ¼ Ae
i xt�x x

CS
sinh��z x

CS
cosh

� �

¼ Ae
i xt�x x

CS
sinh�z x

CS
cosh

� �
e�

x
CS

coshWðzÞ ð7Þ

Inasmuch as (5a) guarantees W(z) > 0 to increase monotonically
and smoothly with z, and the other parameters are positive i.e.,
x > 0 and �1

2 p < h < 1
2 p (i.e., cos h > 0), this expression represents

an evanescent wave which decays exponentially as it propagates
down. Clearly, this very same rule guarantees also that the small
reflection from the bottom boundary will decay upwards, because
in that case jhj > 1

2 p and cos h < 0. Now, a plane SH wave which
enters the PML with an amplitude A reaches the rigid base at the
bottom, z = H, with an amplitude A expð�x cos hWðHÞ=CSÞ ¼
A expð�x cos hXH=CSÞ. In the light of Eq. (5b), this implies in turn
that the total downward attenuation equals A expð�x0 cos hH=
CS=ðmþ 1ÞÞ which for fixed values of X0H is independent of fre-
quency. On the other hand, Eq. (5a) shows that the total stretching
is controlled by the factor XH, and as long as this product is inver-
sely proportional to frequency, then the total downward attenua-
tion will remain constant. Clearly, this goal can be accomplished
just as well by choosing X to be constant and taking the depth H
of the PML to be inversely proportional to the frequency, i.e., pro-
portional to the characteristic wavelength, as done in the ensuing.
Now, since CS ¼ xk=2p, with k being the wave length, the wave
reaches the base with an amplitude A expð�2p cos hXH=kÞ. This
wave elicits in turn a reflection which emerges back at the surface
with an amplitude equal to the square of the previous one, i.e.,
A expð�4p cos hXH=kÞ. Hence, the total roundtrip decay D of the
wave is then

D ¼ e�4pXg cos h ð8Þ

where

g ¼ H=k ð9Þ

Clearly, as long as the thickness of the layer is made propor-
tional to the wavelength (i.e., g is chosen as a constant), the effec-
tiveness of the PML as measured by Eq. (8) for any given angle of
incidence depends solely on the dimensionless parameter X . On
the other hand, a ray entering the PML at x0 with an inclination h
returns to the surface at a distance r = x � x0 = 2H tan h from the
point of penetration, i.e.,

r
k
¼ 2g tan h ð10Þ

Eqs. (8)–(10) indicate that the higher the horizontal range of
interest is, the higher the value needed for X, g, or both.

We now examine the effectiveness of this medium as a PML. For
this purpose, consider an elastic half-space with shear modulus
G = 1 Pa and shear wave velocity CS = 1 m/s excited by an SH line
source acting at a depth zs with frequency x = 2p rad/s. For an

Fig. 1. Propagation of wave in the PML region.
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