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a b s t r a c t

In this paper, we consider residual and equilibrated error indicators for contact problems with Coulomb
friction. The contact problem is handled within the abstract framework of saddle point problems. More
precisely, the non-penetration constraint and the friction law is realized as a variationally consistent
weak formulation in terms of a localized dual Lagrange multiplier space. Thus from the displacement,
we can easily compute in a local post-process the Lagrange multiplier which acts as a Neumann condition
on the possible contact zone. Having computed the discrete Lagrange multiplier, we can apply standard
error estimators by replacing the unknown Neumann data by its approximation. As it is shown in [1], this
results in an error estimator for a one-sided contact problem without friction. Here, we consider more
general situations and discuss two additional contact terms which measure the non-conformity of the
discrete Lagrange multiplier. Numerical results in two and three dimensions illustrate the flexibility of
the approach and show the influence of the material parameters on the adaptive refinement process.

� 2010 Elsevier B.V. All rights reserved.

1. Introduction

In many industrial applications or engineering problems, con-
tact between deformable elastic bodies has to be considered and
plays a crucial role. Although early theoretical results go back to
Hertz [2], there are still many open problems. Recently a lot of re-
search has been done on theoretical existence and uniqueness re-
sults [3,4] and on fast and robust numerical simulation
techniques, see [5,6] and the references therein. From the mathe-
matical point of view, contact problems can be analyzed within
the abstract framework of variational inequalities [7–11].

In the past, penalty methods and simple node to node coupling
concepts have been widely used. Nowadays they are more and
more often replaced by variational consistent methods based on
more sophisticated coupling strategies which also pass a suitable
patch test for highly non-matching meshes. Moreover the admissi-
bility of the solution is formulated as inequality constraint. A com-
mon approach in optimization to treat inequalities is to introduce
additional variables which also have to be admissible. Then the ori-
ginal formulation on a convex set is equivalent to a Lagrangian ap-
proach and can be reformulated as a saddle point problem. In our
situation, displacement and surface traction form a primal–dual
pair of unknown variables. One set of equations reflects the equi-
librium and the other one the non-penetration condition and the
friction law. To obtain a stable and well-posed discrete setting, a
uniform inf–sup condition has to be satisfied. Quite often such a

condition is numerically verified by the Bathe–Chapelle inf–sup
test, [12]. Early theoretical results on uniform stable discretization
schemes for contact problems can be found in [13–15]. We refer to
[16] for a first optimal a priori estimate on a two-body contact
problem without friction for a biorthogonal primal–dual low order
finite element pair. In the case that a vector valued Lagrange mul-
tiplier is used, there is no structural difference between a contact
problem with Coulomb friction and with no friction. Thus quite of-
ten solvers and error estimators designed for contact problems
without friction naturally apply as well as to contact problems
with Coulomb friction. However from the theoretical point of view
there is possibly a considerable difference, e.g., in the case of exis-
tence and uniqueness results, see, e.g., [3,4]. To solve the arising
non-linear system many different approaches exist, e.g., interior
point methods [17], SQP algorithms [18], radial return mapping
or cutting plane methods [19], monotone multigrid methods
[20–23] as well as penalty or augmented Lagrangian approaches
[24,5,25]. Alternatively, the inequality constraints can be rewritten
as a set of nondifferentiable equations, termed nonlinear comple-
mentarity (NCP-) functions (see [26–33] for some examples). Due
to the lack of differentiability, the assumptions for the use of clas-
sical Newton methods [34] are not satisfied, but the so-called
semi-smooth Newton methods [7,35,36] can be applied.

In this paper, we illustrate that a weakly consistent discretiza-
tion based on a biorthogonal set of displacement traces and surface
tractions is well suited for the numerical simulation of contact
problems. It gives in the low order case optimal a priori estimates
under suitable regularity assumptions, see [16,37]. Moreover the
biorthogonality yields a modified but local node to node coupling
concept where the simple interpolation is replaced by a stable
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quasi-projection. To solve the system for Coulomb friction, quite
often a fixpoint approach is applied, and the problem is reduced
to a sequence of simplified problems with given bound for the tan-
gential traction. Here we apply a full Newton scheme to a scaled
NCP-function [38,39]. Early results on Newton type solvers for con-
tact problems can be found in [26–29]. We refer to the recent
monograph on Lagrange multiplier methods for variational prob-
lems [40] and the references therein. It is known that semi-smooth
Newton methods applied to contact problems converge locally
superlinear but that global convergence is not guaranteed. The pre-
asymptotic robustness can be, in particular in 3D, widely improved
by a suitable local rescaling of the NCP-function and a local node-
wise regularization of the Jacobian. In each step, the contact
condition and its type have to be updated locally, e.g., a Robin type
condition applies in the case of a sliding node. As a consequence,
the semi-smooth Newton method can be implemented as a pri-
mal–dual active set strategy [36,38]. The use of active sets allows
for local static condensation of either the dual variable or the cor-
responding primal degrees of freedom, such that only a system of
the size of the displacement has to be solved in each Newton step.
One of the attractive feature of this class of algorithms is that it can
be easily combined with other types of non-linearities such as, e.g.,
plasticity and non-linear material laws. No inner and outer itera-
tion loop due to the different types of non-linearities is required.
To enhance the performance adaptive techniques based on a pos-
teriori error estimators play an important role and are well-estab-
lished for finite element methods, see [41–44] and the references
therein. For abstract variational inequalities, we refer to [45–47],
whereas obstacle type problems are considered in [48–51], and
early approaches for contact problems can be found in [52–58].

The work is structured as follows: In Section 2, the governing
equations and corresponding inequality constraints for frictional
contact problems are stated and reformulated as discrete non-
smooth equalities. We briefly mention the structure of the system
to be solved after consistent linearization. Section 3 is devoted to
different aspects of adaptive refinement. In particular, we show
that the role of the coefficients of the discrete Lagrange multiplier
is quite similar to the moments of equilibrated fluxes, see,
e.g., [59,60]. Having worked out this link, it is quite natural to de-
fine different types of error indicators such as, e.g., residual based,
equilibrated or H(div)-conforming lifted. In Section 5, we illustrate
the performance of the error estimator and use it as indicator for
more general situations. Although the solution of contact problems
shows quite often singularities, adaptive refinement can recover
the optimality of the error decay with respect to the number of
nodes.

2. Problem setting and discrete formulation

In this section, we state the setting of a frictional contact prob-
lem between two elastic bodies. The two bodies in the reference
configuration are given by Xs;Xm � Rd, d = 2,3. Here the upper in-
dex s refers to the body on which the Lagrange multiplier will be
defined in the discrete setting. We also refer to Xs as slave side
and to Xm as master side. The boundary oXk is assumed to be di-
vided into three open disjoint measurable parts Ck

D;C
k
N;C

k
C with

measðCk
DÞ > 0; k 2 fs;mg. Dirichlet conditions will be set on Ck

D,
Neumann data on Ck

N, and the volume forces are denoted by f 2
(L2(X))2, X:¼Xs [Xm. On each body, we consider a homogeneous
isotropic linearized Saint Venant–Kirchhoff material, where the
stress tensor is given in terms of Hooke’s tensor C by

rðvÞ :¼ ktrð�ðvÞÞIdþ 2l�ðvÞ ¼: C�ðvÞ; ð1Þ

and the linearized strain tensor is defined by e (v):¼1/2(rv +
(rv)>). Moreover, tr denotes the matrix trace operator and Id the

identity in Rd. The positive material parameters k and l are the
Lamé parameters and are assumed to be constant on each subdo-
main Xk,k 2 {s,m}.

The linearized elastic equilibrium condition for the displace-
ment u:¼(um,us) can be written as:

�divrðuÞ ¼ f in X;

u ¼ uD on CD :¼ Cm
D [ Cs

D;

rðuÞn ¼ fN on CN :¼ Cm
N [ Cs

N:

ð2Þ

Here n denotes the outer unit normal vector. In addition to (2), we
have to satisfy the linearized non-penetration condition and the
friction law. We find on Cs

C the following linearized inequality con-
straints for the normal components of the surface traction and the
displacement

½un� 6 g; kn P 0; kn ½un� � gð Þ ¼ 0; ð3Þ

where kn:¼kns is the normal component of the boundary stress
k:¼�r(us) ns and [un]:¼(us � um�v)ns. Here, v(�) stands for a suit-
able mapping from Cs

C onto Cm
C , and g(�) is the linearized gap func-

tion between the two deformable bodies. Moreover the surface
tractions on the master and slave body of the contact are in
equilibrium.

In addition to (3), we have to satisfy the static Coulomb law

kktk 6 mkn; ½ut� ¼ a2kt; k½ut�kðkktk � mknÞ ¼ 0; ð4Þ

where the tangential components are defined by kt:¼k � knns and
[ut]:¼[u] � [un]ns, [u]:¼us � um�v, m P 0 is the friction coefficient,
and k�k stands for the Euclidean norm.

Remark 2.1. The special case of a contact problem between one
elastic body and a rigid obstacle can be obtained in the limit case,
km, lm ?1 and thus um = 0.

The discretization of the system is based on a low order pair of
primal–dual variables for the displacement u and the surface trac-
tion k on the contact zone. On each subdomain Xk, k 2 {m,s}, we
use a family of shape regular triangulations T k

l ; l 2 N0 and set
T l :¼ T m

l [ T
s
l . The restriction of T m

l to Cm
C defines a (d � 1)-dimen-

sional surface mesh which will be mapped by v�1 onto Cs
C resulting

in possibly non-matching meshes on the contact zone. For simplic-
ity of notation, we assume that the subdomains and the Dirichlet
boundary part can be resolved by the triangulation. For the dis-
placement, we use low order conforming finite elements and for
the surface traction dual finite elements which reproduce
constants

Vl :¼ Vm
l � Vs

l ; Vk
l :¼ spanp2Pk

l
f/pei; i ¼ 1; . . . ;dg;

Ml :¼Ms
l ; Mk

l :¼ spanp2Pk
C;l
fwpei; i ¼ 1; . . . ;dg;

where Pk
l stands for all vertices of T k

l not being on Ck
D, and Pk

C;l is the
set of all vertices on Ck

C; k 2 fm; sg. Here, we assume that
Ck

D \ Ck
C ¼ ;. Moreover /p stands for the standard conforming nodal

basis function associated with the vertex p, and wp with
suppwp ¼ supp/pjCk

C
satisfies the following biorthogonality relationZ

Ck
C

wp/qdx ¼ dpq

Z
Ck

C

/qdx; p; q 2 Pk
C;l: ð5Þ

We note that there exists no biorthogonal set of non-negative basis
functions. We call a Lagrange multiplier space dual, if the set of ba-
sis functions satisfies (5). If the set of basis functions is given by the
conforming nodal basis functions, we refer to it as standard La-
grange multiplier space. For d = 2, we can use piecewise linear but
discontinuous or continuous but piecewise cubic basis functions.
The weak problem formulation will be based on a suitable subset
of Ml. Let kl 2Ml be given by kl ¼

P
p2Ps

C;l
cpwp; cp 2 Rd, then we de-

fine the convex set
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