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a b s t r a c t

The use of T-splines [30] in Isogeometric Analysis [24] has been proposed in [5] as a tool to enhance the
flexibility of isogeometric methods. If T-splines are a very general concept, their success in isogeometric
analysis relies upon some basic properties that needs to be true as e.g. (i) linear independence of blending
functions and (ii) polynomial reproducibility at element level.

In this paper we study these properties for T-splines of a reduced regularity order, namely, for T-splines
of degree p and regularity a = p � 1 � bp/2c. Our results are both for odd and even degree. Under mild
assumptions on the underlying T-mesh, T-splines are shown to be linearly independent and the space
they span is characterized in terms of piecewise polynomials on a topological extension of the T-mesh.
Also, as p is odd, we construct a new topological local refinement algorithm and demonstrate its locality
properties through numerical examples.

� 2011 Elsevier B.V. All rights reserved.

1. Introduction

NURBS (non-uniform rational B-splines) are a standard in the
Computer Aided Design community mainly because they are extre-
mely convenient of the representation of free-form surfaces and
there are very efficient algorithms to evaluate them, to refine and
derefine them.

One of the main drawback of NURBS is that a NURBS surface is
defined through control points which lie on a topological rectangu-
lar grid, i.e., they are constrained to a tensor product structure. This
means that it may happen that many control points are superflu-
ous and do not add information to the surface.

In geometric modeling, the most popular way to face this prob-
lem relies on the use of trimmed surfaces and the representation of
a geometry with multiple NURBS patches. These techniques allows
for ‘‘small’’ overlaps or gaps among different surface patches and
the efficiency of this approach relies on the use of relative small
number of control points (thousands of them at most) and on the
fact that most often a global mesh is not needed.

Indeed, when using NURBS in analysis, i.e., when designing iso-
geometric methods, this approach is no more convenient: we need
to work with many unknowns (millions of them, indeed) and we

do need a global mesh. Isogeometric analysis has been introduced
by Hughes et al. in [24] and since then it is having a growing
impact in the mechanical engineering, numerical analysis and
geometric modeling communities. Isogeometric analysis has been
now successfully applied to several problems such as fluid dynam-
ics [3,4,6,7,11,22], structural mechanics [2,1,8,15,20,26,32,33] and
electromagnetics [12,13].

Among the various possibilities proposed in the geometric
modeling literature to break the tensor product structure of
NURBS, T-splines seem to be the most adapted to isogeometric
analysis. T-splines has been introduced by Sederberg et al. in two
pioneering papers [30,29] and are basically splines defined over
meshes with T-junctions, called T-meshes. The presence of
T-junctions allow for local refinement and the effort until now
has been the design of suitable refinement techniques using
T-splines. We refer the interested reader to the self contained
paper [5] and to the very recent contributions [25,28].

This paper is about a special class of T-splines, namely the one
of reduced regularity. More precisely, we assume throughout this
paper that T-splines of degree p belong to Ca with a :¼ p �
1 � bp/2c, where bxc is the greatest integer smaller than x. Thus,
C1 cubic, C1 quartic, C2 quintic and so on. For this class of T-splines
we address the following issues:

(i) Linear independence of T-spline blending functions.
(ii) Characterization of the function space they span in terms of

piecewise polynomials.
(iii) Locality property of successive refinements.
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If linear independence is surely needed to have invertible matrices,
and the locality of refinements is important for performance, we
would like to point out that also characterization in terms of piece-
wise polynomials is fundamental. In analysis, the mesh is refined at
a certain location in the domain to improve resolution. Resolution
improves if the space reproduces polynomials at a finer scale. So,
when using T-splines we need to make sure that refining the mesh
means to have polynomials at a finer scale, otherwise, it may not
improve resolution. If it is the case, the quality of the solution we
compute may not improve after refinement. As shown in [10], T-
splines are not always linearly independent and clearly addressing
these questions requires a certain care and an understanding of the
mathematical structure of T-splines over T-meshes.

Due to the simplified setting of reduced regularity, we are able
to provide the following:

(i) A proof that T-splines on T-meshes with only T-junctions
(i.e., without L-junctions, see [5] for details) are linearly
independent.

(ii) A characterization of T-splines in terms of piecewise polyno-
mials, when the T-mesh is moreover regular (see Definition
2.3) and p is odd.

(iii) A local refinement strategy when p is odd.

Our theory uses in a fundamental way the results of [17,18].
Moreover, our local refinement strategy is inspired by the one
studied in [28] for splines of maximal regularity, but it is more
straightforward due to the simpler structure of splines with re-
duced regularity.

The paper is organized as follows. In Section 2, we introduce a
T-mesh and then define the inflated version of the T-mesh on
which the corresponding T-spline blending functions with a proper
continuity order are discussed. Also, we describe the topologically
extended version of the T-mesh where piecewise polynomials are
constructed. In Section 3, we show that the T-spline blending func-
tions are linearly independent and also that under regular assump-
tion on the T-mesh, the space of T-splines is characterized by
piecewise polynomials on the extended T-mesh. In Section 4, using
our analysis for odd degrees p, we investigate the possibility to
construct a local refinement algorithm based only on topological
properties of T-meshes and then propose a new local refinement
algorithm of regular T-meshes. Finally, numerical tests demon-
strating the locality property of the proposed refinement are pre-
sented in Section 5.

2. Preliminaries

In this section we prepare notation and present preliminary
results. Both in one and two dimensions, we introduce and discuss
properties of two kinds of spaces: the space of T-splines on a
T-mesh M and the space of piecewise polynomials with a certain
global regularity defined on a topological extension of the T-mesh
M which will be defined in Section 2.2 and be called fM.

2.1. Notation and definitions in one dimension

Let I = [0,1] and suppose we have a partition of I in subinterval.
We denote by H = {v1,v2, . . .,vm} the collection of its nodes. Of
course it holds 0 = v1 < v2 < � � � < vm = 1. Let p be an integer and
a :¼ p � 1 � bp/2c. We set:

Cðp; IÞ ¼ fu 2 CaðIÞ : ujðv i ;v iþ1Þ 2 Ppg;

where Pp denotes the space of polynomials of degree p. First of all,
we construct spline basis functions for C(p, I). To this aim, we intro-
duce the corresponding ordered knot vector

N :¼ fs�a; . . . ; s0; s1; s2; . . . ; sn; snþ1; . . . ; snþaþ1|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
nþ2aþ2

g; ð1Þ

where 0 = s�a = � � � = s0 = s1 6 s2 6 � � � 6 sn = sn+1 = � � � = sn+a+1 = 1. The
correspondence between the partition H and N is different if p is
odd or even. When p is odd, we set

N ¼ oddN :

¼ fv1; . . . ;v1|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
pþ1 times

;v2; . . . ;v2|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
aþ1 times

; . . . ;vm�1; . . . ;vm�1|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
aþ1 times

;vm; . . . ; vm|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
pþ1 times

g; ð2Þ

with n + 2a + 2 = 2(p + 1) + (m � 2)(a + 1).
When p is even, we have instead

N ¼ evenN :

¼ fv1; . . . ;v1|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
pþ1 times

;v2; . . . ;v2|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
aþ2 times

; . . . ;vm�1; . . . ;vm�1|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
aþ2 times

;vm; . . . ; vm|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
pþ1 times

g; ð3Þ

with n + 2a + 2 = 2(p + 1) + (m � 2)(a + 2).
We can define S(p,N) as the space spanned by B-spline basis

functions associated with N (see e.g. [16]) and clearly we have
S(p,N) � C(p, I), and S(p,N) � Ca since each B-spline associated with
N belongs to Ca.

2.2. Notation and definitions in two dimensions

We start this section with the definition of T-mesh we are going
to use all along this paper. Indeed, two remarks should be made: (i)
we restrict ourselves to T-meshes without L-junctions, (ii) contrary
to what is made in e.g. [5], we first define the T-mesh on the para-
metric space and then ‘‘inflate’’ it to be a T-mesh in the space of indi-
ces. We prefer this way here because in case of knot repetition the
definition on the index space may lead to confusion and it is a little
cumbersome. To this respect, we adopt the definition given in [17].

Thus, let X ¼ ½0;1�2 � R2 be the parametric domain, a T-mesh M

is rectangular tiling of the domain which is basically a rectangular
grid that allows T-junctions, i.e., interior vertices having three
incoming edge (see [5,10,29,30] for more details). In what follows,
we will denote by VðMÞ; EðMÞ; FðMÞ the set of vertices, edges and
faces (elements) of the T-mesh M, respectively. Moreover V

�
ðMÞ

and VbðMÞ stand for the interior vertices and the boundary vertices,
respectively and E

�
ðMÞ and EbðMÞ for the interior edges and the

boundary edges, respectively. Note that, due to the definition of
the T-mesh, the interior vertices can be of two kinds: crossing ver-
tices, i.e., having four incoming edges, or T-junctions, i.e., having
three incoming edges. We denote these two subsets as V

�
CðMÞ

and V
�

TðMÞ, respectively.
Given now a T-mesh M in the parametric space, we are given a

partition of the s axis, Hs and one of the t axis, Ht. Given the degree
p, the global knot vectors Ns and Nt can be constructed which en-
sures a = p � 1 � bp/2c regularity of the corresponding blending
functions. Namely, following our one dimensional construction
(see (2), (3)), we set:

� when p is odd, Ns :¼ oddNs and Nt :¼ oddNt,
� when p is even, Ns :¼ evenNs and Nt :¼ evenNt.

In order to adopt notation in [5], and their definition of T-spline
blending functions, given a T-mesh M and a degree p, the mesh M

can be ‘‘inflated’’ to become a T-mesh in the index space (or in the
index/parametric space that we can use as an intermediate repre-
sentation to emphasize knot repetitions) (see [5,10,19] for details).
This inflation depends on the polynomial degree. The T-mesh in the
index space is denoted by cM :¼ cMðp;MÞ. Examples of this inflation
are given in Fig. 1.

The mesh cM is used in [5] to define anchors and then to attach
blending functions to anchors. When p is odd, an anchor is
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