

Contents lists available at ScienceDirect

Journal of Colloid and Interface Science

journal homepage: www.elsevier.com/locate/jcis

Regular Article

Ferroelectric spontaneous polarization steering charge carriers migration for promoting photocatalysis and molecular oxygen activation

CrossMark

Hongwei Huang^{a,b,*}, Shuchen Tu^a, Xin Du^c, Yihe Zhang^a

^a Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China

^b Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, United States

^c Research Center for Bioengineering and Sensing Technology, Department of Chemistry & Biological Engineering, University of Science & Technology Beijing, Beijing 100083, China

G R A P H I C A L A B S T R A C T

ARTICLE INFO

Article history: Received 10 July 2017 Revised 30 August 2017 Accepted 1 September 2017 Available online 6 September 2017

Keywords: Ferroelectricity Tetragonal BaTiO₃ BiOI Photodegradation Molecular oxygen activation

ABSTRACT

Introducing a polarization electric field in photocatalyst system is regarded as a new concept for photocatalytic activity enhancement. In this work, we first unearth that the spontaneous polarization of ferroelectric BaTiO₃ promotes the photocatalytic and molecular oxygen activation performance of the narrowband-gap semiconductor BiOI. Ferroelectric tetragonal-phase BaTiO₃ (T-BaTiO₃) were prepared via calcination of nonferroelectric cubic-phase BaTiO₃ (C-BaTiO₃), and their polarization ability was verified via ultrasonication-assisted piezoelectric catalytic degradation. Then, the C-BaTiO₃/BiOI and T-BaTiO₃/BiOI heterostructures are fabricated by a soft-chemical method. To disclose the influence of ferroelectric spontaneous polarization on charge movement behavior, the photocatalytic and molecular oxygen activation properties are monitored by degradation of methyl orange (MO) and superoxide radical (\cdot O₂) evolution under visible light irradiation ($\lambda > 420$ nm), respectively. The results demonstrated that T-BaTiO₃/BiOI far outperforms C-BaTiO₃/BiOI and pristine BiOI. The ferroelectric spontaneous polarization of T-BaTiO₃ can steer the migration of photogenerated charge carriers and induce efficient separation, accounting for the strengthened photodegradation and reactive oxygen species O_2^- production rate $(11.02 \times 10^{-7} \text{ mol } \text{L}^{-1} \text{ h}^{-1})$. The study may furnish a new reference for developing efficient tactics to advance the photocatalytic and molecular oxygen activation ability for environmental chemistry and biochemistry applications.

© 2017 Elsevier Inc. All rights reserved.

* Corresponding author at: Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China. *E-mail address*: hhw@cugb.edu.cn (H. Huang).

E-mail address. miw@cugb.cut.cn (n. maang).

1. Introduction

Semiconductor photocatalysis is gaining increasing attention owing to their large potentials for tackling the current serious environmental and energy issues [1–3]. In particular, reactive oxygen species (ROS), the highly-active and green oxidants generated in photocatalytic process, e.g. superoxide ('O₂'), hydroxyl ('OH), peroxyl (RO₂), singlet oxygen $({}^{1}O_{2})$, are of great importance in the fields of environmental chemistry and biochemistry [4,5]. However, the development of photocatalysis is currently largely confined by the unsatisfied charge separation efficiency of photocatalysts, driving many efforts to develop diverse strategies, traditionally, metal or non-metal doping, hetero/homojunction fabrication, etc., for enhancing their photocatalytic performance [6–10]. Though these strategies show certain potential, there are some drawbacks. e.g. For hetero/homojunction fabrication, it requires that the semiconductors must possess matchable band energy levels to allow the effective charge separation and transfer between bands. Building an electric field in photocatalyst system has been regarded as a new tactic to strengthen the separation of photoinduced charge carriers. The existence of internal electric field allows a driving force for the migration of photogenerated electrons and holes in an opposite direction, thereby enhancing the charge separation [11,12].

Ferroelectrics, in which the strong spontaneous polarization can promote charge separation, are introduced in photocatalysis recently. The spontaneous polarization originating from the displacement of the center of the negative and positive charges in a unit cell could induce the appearance of macroscopic positive (C^{+}) and negative charges (C^{-}) on the two opposite sides of ferroelectrics, which would enhance separation of the photogenerated electron-hole pairs [13]. For instance, ferroelectric BiFeO₃ can presumably decrease the charge recombination rate from 17 s⁻¹ to 0.6 s⁻¹ in BiFeO₃/BiVO₄ composite, enabling BiVO₄ photoanode to show high and stable photoelectrochemical water oxidation performance [14]. Similarly, the charge transfer of Z-scheme BiVO₄-CuInS₂ catalyst can be enhanced by ferroelectric BiFeO₃, leading to an improved photodegradation activity for 2,4-dichlorophenol [15]. Tetragonal-phase BaTiO₃ is also a typical ferroelectric material with the Curie temperature of about 120 °C in bulk crystal. However, both the ferroelectric tetragonal phase and nonferroelectric cubic phase can exist at room temperature, as the surfacerelated strain could make the cubic phase stable at room temperature in small crystallites [13]. Hong et al. found that direct piezoelectrical water splitting can be achieved by BaTiO₃ microfibers, but it is not in the piezoelectric tetragonal phase [16]. Benke et al. reported the pyroelectrically driven hydroxyl radicals ('OH) evolution by the cooperation of BaTiO₃ and Pd nanoparticles [17]. Recently, the sonophotocatalysis of Ag₂O-BaTiO₃ hybrid photocatalyst was investigated, and the ultrasonication-assisted piezoelectric polarization of BaTiO₃ was demonstrated to be capable of promoting the photoinduced charge separation of Ag_2O [18]. Nonetheless, the effect of ferroelectric self-polarization of BaTiO₃ on the movement behavior of photogenerated charge carriers of semiconductors has not been recognized.

Layered bismuth-based (LBB) semiconductor photocatalytic materials recently attract intensive research interests due to the diverse structural configurations and strong photo-oxidation ability from hybridized orbitals of O 2p and Bi 6s. They include not only the classical Sillén-structured bismuth halides BiOX (X = F, Cl, Br, I) [19–22] and Aurivillius structured Bi₂MO₆ (M = W, Mo) [23,24], but also some newly-developed Sillén-structure related Bi₂O₂[BO₂(OH)] [25] and Bi₂O₂(OH)(NO₃) [26]. BiOI, which almost possesses the narrowest band gap (1.7–1.9 eV) among the LBB materials [27,28], triggered widespread research efforts, including

heterostructure fabrication with different semiconductors [29-36]. Considering the polar feature of ferroelectrics, coupling BiOI with a ferroelectric, like BaTiO₃, may be a feasible way to promote the charge separation of BiOI, which has not been achieved so far.

In this work, ferroelectric tetragonal-phase $BaTiO_3$ (T-BaTiO₃) was prepared by calcinating nonferroelectric cubic-phase BaTiO₃ (C-BaTiO₃), and we first utilize ultrasonication-assisted piezoelectric catalytic degradation to show their difference. Then, the C-BaTiO₃ and T-BaTiO₃ are separately employed to couple with BiOI to construct C-BaTiO₃/BiOI and T-BaTiO₃/BiOI heterostructures, respectively. The photocatalytic and molecular oxygen activation performance of samples are monitored, respectively, by degradation of methyl orange (MO) and superoxide radical (O_2) evolution under visible light irradiation ($\lambda > 420$ nm). It demonstrated that T-BaTiO₃/BiOI shows much higher photo-reactivity than C-BaTiO₃/ BiOI and pristine BiOI. The efficient charge separation induced by ferroelectric spontaneous polarization of tetragonal-phase BaTiO₂ was demonstrated to be responsible for the enhanced photocatalytic and molecular oxygen activation ability. The corresponding mechanism is also proposed as well. Our work may offer a general approach to photocatalytic activity enhancement of semiconductor photocatalysts.

2. Experimental section

2.1. Synthesis

Cubic non-ferroelectric BaTiO₃ powder (99.9% trace metal basis, \sim 100 nm) was obtained from Sigma. Tetragonal ferroelectric BaTiO₃ samples are synthesized by thermal treatment of cubic BaTiO₃ powder in an alumina crucible at 1200 °C for 24 h in a tube furnace in air based on the Ref. [13], which demonstrated that this high calcination temperature can induce the phase-transformation of BaTiO₃ from cubic phase to tetragonal phase.

The BaTiO₃/BiOI composites are synthesized through a simple room-temperature precipitation method with assistance of ethylene glycol (EG). 0.4 mmol cubic BaTiO₃ or tetragonal BaTiO₃ powders are first dispersed in 20 ml EG solution containing 2 mmol Bi (NO₃)₃·5H₂O (Sigma-Aldrich). After that, 20 ml of KI (2 mmol, Sigma-Aldrich) water solution was dropwise added into the above suspension, and was kept stirring for 1 h. After that, the products were collected with filtration and washed for three times with deionized water and ethanol, and dried at 80 °C for 10 h. The cubic BaTiO₃/BiOI and tetragonal BaTiO₃/BiOI are denoted as C-BaTiO₃/ BiOI or T-BaTiO₃/BiOI, respectively.

2.2. Characterization

The phase structure of samples is determined by X-ray diffraction (XRD, PANalytical Empyrean, Cu K α radiation) with Cu K $_{\alpha}$ radiation (λ = 1.5418 Å). The scanning step width of 0.02° and the scanning rate of 0.2° S⁻¹ were applied to record the patterns in the 2 θ range of 10–75°. Field-emission scanning electron microscopy (FESEM, FEI NanoSEM 630) and transmission electron microscopy (TEM, JEOL 1200 EXII) are used to analyze the morphology and microstructure. UV–vis diffuse reflectance spectra (DRS) of samples were obtained using a Varian Cary 6000i spectrophotometer. The spectra were recorded at 250–750 nm referenced to BaSO₄. Specific surface area was determined by the nitrogen adsorptiondesorption method on a 3020 Micromeritics instrument.

2.3. Photocatalytic degradation experiments

The photocatalytic performance of samples is assessed by degradation of methyl orange (MO) under visible light irradiation Download English Version:

https://daneshyari.com/en/article/4984301

Download Persian Version:

https://daneshyari.com/article/4984301

Daneshyari.com