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a b s t r a c t

A stabilized finite element method for the simulation of instationary and stationary multi-ion transport
in dilute electrolyte solutions is presented. The proposed computational approach accounts for all three
ion-transport phenomena, that is, convection, diffusion and migration, as well as nonlinear electrode
kinetics boundary conditions. The governing equations form a set of coupled nonlinear partial differential
equations subject to an electroneutrality condition. The latter establishes an algebraic constraint to the
problem formulation. Derived from the variational multiscale method, we introduce stabilization terms
which prevent potential spurious oscillations arising in the convection-dominated case when a standard
Galerkin finite element method is used. For various numerical examples, it is demonstrated that the pro-
posed computational method is robust and provides accurate results.

� 2012 Published by Elsevier B.V.

1. Introduction

For the modeling of many electrochemical systems, the consid-
eration of ion-transport phenomena plays a fundamental role.
Within macroscopic models based on a continuum hypothesis,
three different ion-transport mechanisms are typically considered
for dilute electrolyte solutions (see, e.g., [1]): convection, diffusion
and (electro-) migration. The latter effect describes movement of
ions caused by an electric field. In this work, we focus on electro-
chemical systems where the influence of convection is not negligi-
ble. One example is electrodeposition of metals, an important and
widely-used electrochemical technique for coating electrically
conductive objects with layers of metal by using electrical current.
In many industrial plating baths, it is aimed at keeping the electro-
lyte solution well-mixed by using various agitation and stirring
techniques. Rotationally symmetric parts to be plated are usually
also rotated to achieve more uniform plating results. As a conse-
quence, rather complex, often turbulent flow conditions arise, di-
rectly influencing the ion-transport processes inside the
electrolyte solution. Hence, a mathematical model describing such
electrochemical systems has to take into account the apparent cou-
pling to fluid flow.

Over the last decades, various numerical approaches for the
simulation of multi-ion transport in dilute electrolyte solutions
have been developed; in the following, some of these approaches
will be addressed. In [2], a fractional-step algorithm using a fi-
nite-difference scheme for spatial discretization was proposed.
Steady-state studies for a two-dimensional parallel plane flow
channel were performed in [3] using a new multi-dimensional
upwinding method for the analysis of multi-ion electrolytes con-
trolled by diffusion, convection and migration. A finite-difference
method with upwinding was developed in [4] for the simulation
of convection-dominated multi-ion transport. Using that method,
various two-dimensional electrochemical problem settings includ-
ing convection were studied (see, e.g., [4,5] and references therein).
In [6], a three-dimensional model of an electrochemical sensor was
investigated. A finite-volume software package was used for solv-
ing the Nernst–Planck/Poisson–Boltzmann system of equations
coupled to the Navier–Stokes equations. A finite-volume method
for solving three-dimensional diffusion-migration problems on
irregular domains with moving boundaries was proposed in [7].

In [8], a finite element method (FEM) was used to simulate cur-
rent–density distributions in three-dimensional microchannels.
However, their model did not account for migration, and a constant
conductivity of the electrolyte solution was assumed. Ion-diffusion
mechanisms in porous media were modeled via FEM in [9], using
the Nernst–Planck–Poisson system of equations. Only diffusion
and migration were considered in the ion-transport model. A rotat-
ing cylinder Hull cell was investigated in [10] using a commercial
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finite element software package. Steady-state current distributions
for a 2D axial-symmetric model were computed. Only the concen-
tration of a single ionic species was considered, and no flow field
was computed, since the corresponding mass transport model
was based on a Nernstian diffusion layer expression. An adaptive
multilevel finite element algorithm was proposed in [11] and ap-
plied for solving various controlled-current experiments in one
spatial dimension. In [12], finite element discretizations for a Na-
vier–Stokes–Nernst–Planck–Poisson system were investigated the-
oretically. Recently, in [13], we presented a finite element method
suitable for three-dimensional electrochemical problem configura-
tions including all three ion-transport effects as well as nonlinear
electrode kinetics at the same time. The apparent (one-way) cou-
pling to fluid flow and its numerical treatment was particularly ad-
dressed in [13].

It is well-known that a standard Galerkin finite element method
(SGFEM) applied to transport equations with a dominating convec-
tive term can lead to oscillations. To account for this, stabilized fi-
nite element methods were developed for the numerical solution
of convection–diffusion-reaction equations and the incompressible
Navier–Stokes equations, e.g., the Streamline-upwind Petrov/
Galerkin (SUPG) method in [14]. For an overview on existing meth-
ods, the reader is referred to, for instance, [15]. Stabilized methods
may be considered particular methods derived from the more gen-
eral framework of the variational multiscale method (VMM) as
originally introduced in [16]. The present authors successfully
developed methods based on the variational multiscale framework
for the challenging problems of turbulent incompressible flow, e.g.,
in [17], and turbulent variable-density flow at low Mach number,
e.g., in [18,19], among others.

Concerning electrochemistry, particularly coupled multi-ion
transport problems, very few publications addressing stabilized fi-
nite element methods exist. In [20], a mixed finite element method
for the numerical simulation of electrophoresis separation phe-
nomena was proposed. Therein, different ion-separation processes
in one- and two-dimensional configurations were studied. An
SUPG approach was proposed as the stabilizing technique. How-
ever, no coupling to the Navier–Stokes equations was included in
that solution approach, and no boundary conditions for modeling
electrochemical reactions at electrode surfaces were considered
in the mathematical model. Transport of charge carriers within
semiconductor devices is often described with the popular drift–
diffusion model. The governing equations exhibit similarities to
the governing equations of multi-ion transport in dilute electrolyte
solutions. In [21,22], for instance, stabilized finite element formu-
lations were used for the spatial discretization of the arising drift–
diffusion equations. However, one of the main differences to multi-
ion transport is the absence of a convective term which is estab-
lishing the one-way coupling to fluid flow in our case.

In the present study, a novel formulation based on the varia-
tional multiscale method (VMM) for the coupled multi-ion trans-
port problem will be developed, which extends the method
proposed previously in [13]. To the authors’ best knowledge, such
a comprehensive methodical approach for robust and accurate
simulations of multi-ion transport in dilute electrolyte solutions
including all transport phenomena, convection, diffusion, and
migration, as well as nonlinear electrode boundary conditions
has not yet been presented.

The outline is as follows. In Section 2, we recall the governing
equations for modeling multi-ion transport and electrode reactions
in electrochemical systems and introduce them into a weak prob-
lem formulation, which forms the basis for our new computational
approach. Our newly developed stabilized finite element method
based on the variational multiscale framework is presented in Sec-
tion 3. Within that section, we emphasize the issue of defining
appropriate stabilization terms for the system of coupled nonlinear

partial differential equations. The numerical approach is tested for
several numerical examples in Section 4. Finally, conclusions are
drawn in Section 5.

2. Problem formulation

2.1. Governing equations

We consider fluid flow and multi-ion transport for the time
interval 0; T½ � in a polyhedrally-shaped and bounded domain
X � Rd, where d 6 3 is the number of space dimensions. As usual,
the boundary of X is denoted by @X. The closure of X is given by
X :¼ X [ @X. The incompressible Navier–Stokes equations provide
an adequate model to describe the flow of a dilute electrolyte solu-
tion in an electrochemical cell at a macroscopic scale (see, e.g., [1]).
The solution variables are the velocity field u and the pressure p,
which are governed by

@u
@t
þ u � ru�r � ð2meðuÞÞ þ rp ¼ g in X� ð0; TÞ; ð1Þ

r � u ¼ 0 in X� ð0; TÞ; ð2Þ

where m denotes the kinematic viscosity of the electrolyte solution,
g the specific volume force and eðuÞ the symmetric strain rate ten-
sor given by

eðuÞ ¼ 1
2
ruþ ðruÞT
� �

:

Based on the partition @X ¼ CD [CN, with CD \ CN ¼ ;, appropriate
boundary conditions read as follows:

u ¼ uD on CD � ð0; TÞ;
ð�pIþ 2meðuÞÞ � n ¼ t on CN � ð0; TÞ:

Here, uD is the velocity prescribed on the boundary part CD, n the
unit outer normal to the boundary and t the traction vector on
CN. Finally, an initial condition in the form

u ¼ u0 in X� f0g

is required for instationary flow problems, with u0 being a solenoi-
dal initial velocity field.

For the electrochemistry part of the mathematical model, solu-
tion variables to be determined are the molar concentrations ck for
each ionic species k ¼ 1; . . . ;m present in the electrolyte solution.
The electric potential field U inside the electrolyte solution is an
additional unknown physical field. Note that the corresponding
electric field E is given by the negative gradient of the electric po-
tential, that is E ¼ �rU. Based on mass conservation, each concen-
tration field ck with k ¼ 1; . . . ;m is governed by a convection–
diffusion-migration equation (Nernst–Planck equation) that reads
in its convective form as:

@ck

@t
þ u � rck þr � Ndþm

k ¼ 0 in X� ð0; TÞ: ð3Þ

The ionic mass flux contribution due to diffusion and migration is
given by

Ndþm
k :¼ �Dkrck � zklkFckrU: ð4Þ

Here, Dk is the diffusion coefficient of ionic species k with respect to
the solute, zk is the corresponding charge number (valence), lk the
mobility constant, F Faraday’s constant (96,485 C/mol) and u the
velocity of the electrolyte solution governed by the incompressible
Navier–Stokes equations. Thus, the convective term in (3) estab-
lishes a one-way coupling of each ion-transport equation to the
flow. As usual in dilute-solution theory, the mobility constant lk

is expressed in terms of the diffusivity Dk, the absolute temperature
T and the universal gas constant R by the Nernst–Einstein relation
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