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a b s t r a c t

The construction of a nonlinear reduced-order model for fluid–structure interaction problems is investi-
gated in this paper for unsteady compressible flows excited by the rigid body motion of a structure. The
reduction is achieved by means of a Galerkin projection of the Navier–Stokes equations on the first POD
modes resulting from the proper orthogonal decomposition. In the first part of the paper, the projection
technique is carried out on a purely aerodynamic case in order (i) to validate an efficient iterative tech-
nique based on an updated QR decomposition to compute the POD modes, and (ii) to discuss the merits of
different correction methods introduced to improve the long-term stability of the reduced-order model.
The second and most original part of the paper deals with the construction of the reduced set of equations
which arise from the projection of the compressible Navier–Stokes equations formulated in a suitable
moving frame representing the rigid body motion. The expressions of the resulting non-autonomous
terms appearing in the reduced-order model have also been optimized to reduce the computational costs.

� 2011 Elsevier B.V. All rights reserved.

1. Introduction

The modelization of unsteady aeroelastic phenomena like those
involved in aircraft wings or turbomachinery is very time-consum-
ing. Such simulations cannot be performed routinely for paramet-
ric studies which are needed to evaluate the performances and to
control or optimize the system. Reduced-order models with a very
small number of degrees of freedom are therefore developed since
several decades in the hope of being able to reproduce almost the
same dynamics as the full-order system. Specific reviews in the
context of compressible aerodynamics have already been proposed
[22,45] but little work has been done in the case of fluid–structure
interaction [4,43,63]. Another solution would be to consider the
structural motion as a parameterized shape modification and to
use sensitivity analysis to introduce the effects of the motion
[1,33,34].

We focus here on the proper orthogonal decomposition (POD)
whose principle is to determine the optimal basis to represent
the system response described by a set of snapshots [37]. On the
assumption that the system variables can be decomposed on the
POD basis at each time instant, the projection of the equations gov-
erning the mechanical system on each POD mode produces a small

set of ordinary differential equations governing the coordinates of
the variables in the basis.

Since the pioneer work of Lumley [47], the proper orthogonal
decomposition has been extensively used as an efficient reduction
method for a wide variety of fluid dynamics systems. Three main
techniques have been developed according to the equations con-
sidered to model the flow. When the flow is linear or can be line-
arized, the discrete projection is the most straightforward technique
since the projection is merely performed by means of a pre-
multiplication by the transpose of the POD basis matrix. This type
of reduced-order model has been widely used for linear stability
analysis in the context of aircraft [44,49] or turbomachinery appli-
cations [22,23,31,67]. The nonlinearities can be preserved in the
reduced-order model with what Lucia et al. [45] called the projec-
tion on the residual. At each time step, the nonlinear residual is
computed in the physical space with the full-order model and is
then projected on the POD basis to advance in time. This technique
has been used successfully to reproduce large displacements
effects [4], limit-cycles oscillations [8], or shock oscillations
[46,52]. The reduction is however not optimal since the aerody-
namic field involving many degrees of freedom has to be recon-
structed at each time instant to evaluate the residual. Recently
Carlberg et al. [14] proposed an alternative formulation with three
degrees of approximation to avoid the evaluation of the whole
aerodynamic field. If the nonlinearity can be viewed as the action
of multilinear operators like polynomials, the Galerkin projection
technique yields an explicit nonlinear reduced-order model
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without requiring the computation of the residuals. Otherwise, the
nonlinear terms are implicit and the technique has to cope with
the same drawbacks as with the projection on the residual tech-
nique. The Galerkin projection approach already investigated by
the author in [54] is therefore considered here. The main difficulty
which is addressed in this paper lies in the formulation of the
equations for compressible flows in the presence of a moving
structure.

Indeed, the majority of the developments has focused on
incompressible flows for which the Navier–Stokes equations are
a set of quadratic partial differential equations. The Galerkin pro-
jection therefore leads to explicit nonlinear reduced-order models
which have been used to reproduce turbulent structures [5,11,47],
the vortex shedding process in the wake of obstacles [17,40,60] or
behind a backward-facing step [18,19] and the driven cavity flow
problem [15,40] for example. Recently, such reduced-order models
have been applied to the control of flows [3,10,58,59,62,66] or to
fluid–structure interaction problems [43].

Three difficulties arise when dealing with POD-Galerkin
reduced-order models for nonlinear compressible flows around a
moving structure: the first one (i) is the choice of the variables to
obtain polynomial equations, the second (ii) concerns the compu-
tation of the POD modes for large snapshots databases and the last
one (iii) is related to the lack of stability.

The Navier–Stokes equations usually formulated with the con-
servative variables for compressible flows are not quadratic and
the Galerkin projection yields an inadequate implicit formulation.
For isentropic flows, Rowley et al. [57] managed to derive a qua-
dratic reduced-order model also employed in [29] to reproduce
self-sustained oscillations of acoustic waves. In the general case,
quadratic equations can yet be written with the judicious use of
the modified primitive variables. This formulation has been intro-
duced for nonlinear compressible flows around a fixed airfoil
[12,39,64]. The main contribution of this paper is the extension
of this formulation to solve point (i) in such a way that a rigidly
moving structure can be taken into account in the Navier–Stokes
equations while maintaining the quadratic form which is suitable
for the projection.

Even with the snapshots method of Sirovich [61], the computa-
tion of the POD modes is time consuming as the snapshots become
large. Solutions based on the Lanczos algorithm [24] or a parallel
domain decomposition procedure [7] have been proposed, but
the solution to point (ii) adopted here is based on a QR decompo-
sition which is iteratively enriched [16,48].

The lack of stability mentioned as point (iii) is due to the dis-
cretization scheme used to approximate the fluxes, to the trunca-
tion of the POD basis, to the non-respect of certain boundary
conditions or to some simplifying assumptions [19,38,50,56].
Numerous stabilization procedures have therefore been developed
(see [29] for a comparison in the case of compressible flows). For
autonomous systems, the proper evaluation of the initial condi-
tions can be sufficient to reproduce accurately the limit-cycles
[2]. The stability can also be enforced by modifying the dissipation
operator [5,15,60,64] or by replacing the usual L2 inner product by
another one which takes into account the spatial or temporal
derivatives of the snapshots [35,39,41]. More sophisticated correc-
tion techniques based on the evaluation of the reduced-order mod-
el error have recently been developed [9,40]. General calibration
techniques have finally been introduced in [18,27] to determine
the optimal constant, linear and/or quadratic coefficients of the re-
duced-order model by minimizing an error functional. This tech-
nique has been formulated in [51,66] as a linear least-squares
problem.

In this paper, we consider as a preliminary work an oscillating
airfoil in a nonlinear, compressible and possibly viscous flow. Such
a level of modelization is indeed required to reproduce some

complex aeroelastic phenomena [21] which motivate this study.
Section 2 is devoted to the formulation of the POD-Galerkin
reduced-order model for compressible flows governed by the
Navier–Stokes equations described in a moving frame of reference
with the set of modified primitive variables. The algorithm to
compute the POD modes is also briefly described. In Section 3,
the correction techniques used to improve the accuracy of the
reduced system response are presented. A first reduced-order
model of the Navier–Stokes equations is constructed in Section 4
for a fixed airfoil to validate the iterative QR decomposition
algorithm adopted to compute the POD modes. Different calibra-
tion methods are also evaluated for short- and long-term time
integration. Finally, a reduced-order model of the Euler equations
is built in Section 5 to reproduce the motion of a shock generated
by the oscillation of a moving airfoil.

2. Construction of the POD-Galerkin reduced-order model for
compressible flows

2.1. Computation of the POD modes

Let Q = {q(m) 2 H ;m = 1, . . . ,M} be a finite set of snapshots. Each
snapshot is the solution of the full-order mechanical system at the
time instant tm 2 Is = [t0 ; t0 + Ts] and is defined on the spatial do-
main X � Rd with d = 1, 2 or 3 such that qðmÞ ¼ ½q1ðtmÞ; . . . ; qnv

ðtmÞ�T is a vector of nv squared integrable functions of space
describing the aerodynamic field. The associated Hilbert space
H ¼ ðL2ðXÞÞnv is endowed for all q and r in H with the inner product

hq; ri ¼
Z

X

Xnv

k¼1

qkrkdX ð1Þ

and the induced norm is kqk2 = hq,qi. The previous inner product is
well-defined as long as the snapshots are dimensionless since they
contain different physical quantities.

The aim of the proper orthogonal decomposition is to find a
subspace S � H of low dimension q which provides the best
approximation of any member of Q. Usually the snapshots are cen-
tered and the problem is to find the best basis to approximate the
fluctuations of the snapshots ~qðmÞ ¼ qðmÞ � �q around a mean state
defined by the discrete weighted temporal average �q ¼ E½qðmÞ� ¼PM

m¼1amqðmÞ with am > 0 and
PM

m¼1am ¼ 1. The subspace is defined
by the basis U = {u(j) 2 H ; j = 1, . . . ,q} so that S = span{u(1), . . . ,u(q)}.
Each snapshot q(m) can therefore be approximated on the subspace
S by the following affine decomposition on the POD modes u(j):

qðmÞ � qðmÞPOD ¼ �qþ
Xq

j¼1

aðmÞj uðjÞ 8m 2 s1; Mt: ð2Þ

The optimality statement of the POD modes u(j) and the additional
constraints of orthonormality lead to the definition [42]

min
uðjÞ2H

E k~qðmÞ �
Pq
j¼1
h~qðmÞ;uðjÞiuðjÞk2

" #
subject to huðiÞ;uðjÞi ¼ dij

8><>: ð3Þ

which is equivalent to the maximization of
Pq

j¼1hE½h~qðmÞ;uðjÞi~qðmÞ�;
uðjÞi [54]. Introducing the linear operator R such that for all
y 2 H;Ry ¼ E½h~qðmÞ; yi~qðmÞ�, the optimization problem (3) finally
amounts to the resolution of the eigenvalue problem Ru(j) = kju(j)

for each POD mode u(j) [37,54]. This approach is called the direct
method since the POD modes are directly computed as the solutions
of the eigenproblem. The Hilbert–Schmidt operator R has r 6M
non-null eigenvalues and eigenvectors. The eigenvalues kj represent
the ‘‘energy’’ captured by each POD mode and provide an estimation
of the truncation error �q ¼

Pr
j¼qþ1kj [42].
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