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a b s t r a c t

Curvature dissipation is relevant in synthetic and biological processes, from fluctuations in semi-flexible
polymer solutions, to buckling of liquid columns, to membrane cell wall functioning. We present a
micromechanical model of curvature dissipation relevant to fluid membranes and liquid surfaces based
on a parallel surface parameterization and a stress constitutive equation appropriate for anisotropic flu-
ids and fluid membranes. The derived model, aimed at high curvature and high rate of change of curva-
ture in liquid surfaces and membranes, introduces additional viscous modes not included in the widely
used 2D Boussinesq-Scriven rheological constitutive equation for surface fluids. The kinematic tensors
that emerge from the parallel surface parameterization are the interfacial rate of deformation and the
surface co-rotational Zaremba-Jaumann derivative of the curvature, which are used to classify all possi-
ble dissipative planar and non-planar modes. The curvature dissipation function that accounts for bend-
ing, torsion and twist rates is derived and analyzed under several constraints, including the important
inextensional bending mode. A representative application of the curvature dissipation model to the peri-
odic oscillation in nano-wrinkled outer hair cells show how and why curvature dissipation decreases
with frequency, and why the 100 kHz frequency range is selected. These results contribute to character-
ize curvature dissipation in membranes and liquid surfaces.
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Nomenclature

Abbreviations
{1D, 2D, 3D} one, two and three dimension
OHC outer hair cell
TIF transversely isotropic fluid
nm nanometers

Subscripts
S surface
BS Boussinesq-Scriven

Notations
A area of a solid shell [m2]
b characteristic frequency [rad/s]
{c1, c2} principal curvatures [1/m]
{cm, em} eigenvalues and eigenvectors of b [1/m, 1]
cs = oM/os arclength partial derivative [Pa m2/ m]
D deviatoric curvature [1/m]
De Deborah number [1]
Di diameter [m]
Fc(t) scalar compression force [N/m]
{F0, F1} Euler buckling threshold and amplitude oscillatory

driving force [N/m]
HI hypergeometric integral formula [1]
h1 interface/membrane thickness [m]
h vertical displacement [m]
{h(0,t), h(L,t)} vertical displacement at x = 0 and x = L [m]
Dh fractional height change [1]
{Dhmin, Dhmax} fractional height change at tmin and tmax [1]
H mean surface curvature [1/m]
K Gaussian curvature [1/m2]
kc membrane bending rigidity elastic moduli [J]
M scalar viscoelastic moment [Pa m2]
Y undetermined constant of the amplitude [m]
rm principal curvature radii [m]
R(t) radius of curvature [m]
R(t = 0) initial radius of curvature [m]
R = Dc/DBS rate of change of curvature dissipation/deformation

rate dissipation [1]
Runiaxial ratio of curvature uniaxial [1]
Rbiaxial ratio of curvature biaxial [1]
Rtriaxial ratio of curvature triaxial [1]
rm principal radii of curvature [m]
r(t) radius [m]
s arc-length [m]
t time [s]
to initial time [s]

Greek letters
{a00, a01, a1, a4, a56} viscosities [Pa s]
DBS Boussinesq-Scriven dissipation function [Pa m /s]
DGBS generalized Boussinesq-Scriven dissipation function

[Pa m/s]
DC curvature dissipation function [Pa m/s]
hD�i dimensionless space-averaged curvature dissipation

per cycle [1]
g solvent viscosity per unit length [Pa s m�1]
gDi

3 bending viscosity [Pa m2s]
gin internal friction force [J s]
gm bulk viscosity [Pa s]
{gB;gT ,gT} bending, torsion and twist viscosities [J s]
gb bending viscosity [J s]
gtt Torsion-twist viscosity [J s]
C(x) Gamma function [1]
js surface dilatational viscosity [Pa m s]

ls surface shear viscosity [Pa m s]
{hAs, hAs ± p/2} principal directions [1]
{hb�, hb� ± p/2} principal directions [1]
k distance from parent surface [m]
fk2; k1g upper and lower limits of cross-thickness integral [m]
sn polymer chain relaxation time [s]
s period frequency [s]
s0 integration variable [1]
/(s,t) normal angle [rad]
Xn angular velocity [rad/s]
x angular frequency [rad/s]

Vector, dyadic and tensors
A rate of strain tensor [1/s]
AS symmetric surface rate of strain tensor [1/s]
b curvature tensor [1/m]
C symmetric tensor C [1]
Dq deviatoric curvature tensor [1/m]
{e1, e2} main curvature frame [1/m]
IS surface unit normal [1]
ISIS dyadic product of the surface unit normal [1]
I unit dyadic tensor [1]
HIs trace curvature tensor [1/m]
{Is, q, es, q1} four independent basis surface tensor [1]
k surface unit normal vector [1]
M viscous torque [J]
Ms viscous interface moment tensor [Pa m2]
fMB

s ;M
T
s ;M

T
s g symmetric viscous bending, torsion and twist
moment tensors [J/m]

n director vector [1]
nn dyadic product of the director vector [1]
P second order tensor [1]
q surface basis tensor [1]
qq dyadic product of q tensor [1]
q1q1 dyadic product of q1 surface [1]
qn wave vector [1/m]
rðsÞ space curve [m]
r\ transverse displacement [m]
t unit tangent vector [1]
tt dyadic product of the unit tangent vector [1]
tk dyadic product between of the unit tangent and normal

vectors [1]
T symmetric viscous stress tensor [Pa]
TT transpose of a symmetric viscous stress tensor [Pa]
ΤS tangential viscous stress tensor [Pa m]
U tangential component of the velocity field vector v [m/

s]
v interface velocity vector [m/s]
Vnk normal component of the vector v [m/s]
Ws parent Surface vorticity tensor [1/s]
Z arbitrary second order tensor Z [1]

Greek
dr unit vector in the radial direction [1]

k-symbols
dk/dt rate of the unit normal vector [1/s]
drsk/dt rate of the interfacial gradient operator [m�1/s]

Time and spatial derivatives

b
o

co-rotational Zaremba-Jaumann derivative [m�1/s]
_b rate of change of curvature tensor [m�1/s]
_D time derivative of the deviatoric curvature [m�1/s]
_H time derivative of the mean surface curvature [m�1/s]

104 O.F. Aguilar Gutierrez et al. / Journal of Colloid and Interface Science 503 (2017) 103–114



Download English Version:

https://daneshyari.com/en/article/4984546

Download Persian Version:

https://daneshyari.com/article/4984546

Daneshyari.com

https://daneshyari.com/en/article/4984546
https://daneshyari.com/article/4984546
https://daneshyari.com

