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ABSTRACT

We present rigorous a posteriori output error bounds for reduced basis approximations of parametrized
parabolic partial differential equations with non-affine source terms. The method employs the empirical
interpolation method in order to construct affine coefficient-function approximations of the non-affine
parametrized functions. Our a posteriori error bounds take both error contributions explicitly into
account—the error introduced by the reduced basis approximation and the error induced by the coeffi-
cient function interpolation. To this end, we employ recently developed rigorous error bounds for the
empirical interpolation method and develop error estimation and primal-dual formulations to provide
rigorous bounds for the error in specific outputs of interest. We present an efficient offline-online com-
putational procedure for the calculation of the reduced basis approximation and associated error bound.
The method is thus ideally suited for many-query or real-time contexts. As a specific motivational exam-
ple we consider a three-dimensional mathematical model of a welding process. Our numerical results
show that we obtain efficient and reliable mathematical models which may be gainfully employed in

manufacturing and product development.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

The role of numerical simulation in engineering and science has
become increasingly important. System or component behavior is
often modeled using a set of parametrized partial differential equa-
tions (PDEs) and associated boundary and initial conditions, where
the parameters, or inputs, u—such as material properties and
geometry—serve to identify a particular configuration. Since the
analytical solution to these problems is generally unavailable, a
discretization procedure such as the finite element method (FEM)
is used in practice. In a design, optimization, and control context
one often requires repeated, reliable, and real-time prediction of
the system or component outputs, s¢, such as heat fluxes or flow
rates.! These outputs are typically functionals of field variables,
y®—such as temperatures or velocities—associated with the parame-
trized PDE. The relevant system behavior is thus described by an im-
plicit input-output relationship, s¢(u), evaluation of which demands
solution of the underlying parametrized PDE.

More specifically, the motivation of this work is to develop an
efficient mathematical model for the heat flow in a welding
process [1-5]. An accurate knowledge of the temperature distribu-
tion within the workpiece is crucial in determining the quality of
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! Here, superscript “e” shall refer to “exact.” We shall later introduce a “truth
approximation” which will bear no superscript.
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the weld: two such quality measures are the weld pool depth—
indicating the strength of the joint—and the shape distortion of
the workpiece.

A complete model of the welding process which couples and ac-
counts for all of the physical processes involved does not yet exist.
In actual practice, the heat flux input is therefore modeled as a
parametrized volume heat source [2,6,7]. The non-dimensionalized
temperature distribution, y°(x,t; 1), within the workpiece is gov-
erned by the (appropriately) non-dimensionalized unsteady
convection-diffusion equation

% (X, 15 1) + V- VYR, 1) — KV2YE(X, 6 1)
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with initial condition (say) y°(x,t=0;u)=0. Here, Q c R® is the
three-dimensional spatial domain, a point in which shall be de-
noted by x = (x1,x,X3), the time interval of interest is I = ]0,t¢] with
final time t; > 0, v corresponds to the velocity of the torch,? k is the
thermal diffusivity, and u(t) is the source strength. In this paper, we
consider the so called hemispherical volume heat source given by

q(x; ) = e /7 e /N e NI xe Q. (2)

2 We consider a coordinate system moving with the same velocity as the torch. In
this coordinate system, the torch is stationary and the velocity enters as a convective
term in the governing equation; see Section 3.1.3.
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The standard deviations a;, i =1, 2, 3, and the thermal diffusivity x
shall serve as our parameter, i.e.,, our parameter of interest is
w=(01,02,03,1). The source type (2) is a special case of the double
ellipsoid source which was first introduced by Goldak et al. [6] to
model the heating effect of a welding torch. We note, however, that
the methods developed in this paper are not restricted to the
particular welding process considered here, i.e., Gaussian source
terms play an important role in many applications in science and
engineering-another prominent example is the simulation of air-
borne contaminants [8-10]. Furthermore, our approach of course
also directly applies to other types of non-affine functions besides
Gaussians.

The main task in the analysis and modeling of the welding pro-
cess is to find parameters (¢4,03,03) such that the simulated tem-
perature at one or several measurement points on the surface of
the workpiece predicted by (1) and (2) matches the experimental
measurements [11]. Given the parameter estimates, we may sub-
sequently aim to control the welding process to achieve a desired
weld pool depth [12,13,3]. The parameter estimation problem
needs to be solved in real-time, requiring a rapid and reliable eval-
uation of the PDE (1). Our goal here is thus to develop numerical
methods to efficiently and reliably evaluate the forward problem,
i.e., the PDE-induced input output relationship (1), in the limit of
many queries or in real-time.

To achieve this goal we pursue the reduced basis method. The
reduced basis method is a model-order reduction technique which
provides efficient yet reliable approximations to solutions of
parametrized partial differential equations in the many-query or
real-time context; see [14] for a recent review of contributions to
the methodology. In this paper we focus on parabolic problems
with a non-affine parameter dependence in the source term—a
typical example is given by the Gaussian function (2). To this end
we employ the empirical interpolation method (EIM) [15] which
serves to construct affine approximations of non-affine parame-
trized functions. The method is frequently applied in reduced basis
approximations of parametrized PDEs with non-affine parameter
dependence [15-19]; the affine approximation of the coefficient
function is crucial for computational efficiency.

A posteriori error estimators for non-affine elliptic and parabolic
problems have been proposed in [17,19,20], respectively. However,
these estimators do not provide a provable rigorous upper bound
for the true error due to the contribution of the interpolation error.
Only recently, Eftang et al. [21] introduced a rigorous error analysis
for the EIM. Furthermore, reduced basis output approximations
and associated output bounds may suffer from a slow convergence,
thus requiring a large dimension of the reduced order model to
achieve a desired accuracy. Primal-dual formulations were pro-
posed in [22] to circumvent this problem and improve the accuracy
of the output prediction. These ideas have been successfully ap-
plied also in the FEM context, e.g. in [23,24], and in the reduced ba-
sis context, e.g. in [25-27]. However, these previous reduced basis
works only considered affine problems. The contributions here are
thus (i) rigorous a posteriori error bounds for reduced basis approx-
imations of non-affine parabolic problems, and (ii) the develop-
ment of primal-dual formulations for non-affine problems to
ensure rapid convergence of the reduced basis output approxima-
tion and output error bound.

This paper is organized as follows: in Section 2 we present a
short review of the EIM and corresponding rigorous error analysis.
The abstract problem formulation and reduced basis approxima-
tion for linear coercive parabolic problems with non-affine source
terms are introduced in Section 3. In Section 4 we develop our a
posteriori error estimation procedures and in Section 5 we briefly
discuss the sampling technique to generate the reduced basis
space. Numerical results for the welding process are presented in
Section 6. Finally, we offer concluding remarks in Section 7.

2. Empirical interpolation method

In this section we briefly review the EIM and associated a pos-
teriori error estimation procedures [15,16,21].

2.1. Coefficient function approximation

We assume we are given a function g:Q xD — R with
g(-; ) € L°(Q) for all u € D, where D ¢ R” is the set of admissible
parameters, Q c R, d = 1,2,3, is a bounded domain, and L™(Q)
:= {v]esssupyeq|Ux)| < oo}. We introduce a finite but suitably large
parameter train sample ZE < D which shall serve as our surrogate
for D, and a triangulation 7 - (Q) of Q with \ vertices over which we
shall in practice realize g(-; i) as a piecewise linear function.

The construction of the EIM approximation space W%, and set
of interpolation points T, = {X',...,X™} is based on a greedy
algorithm [28]: we first choose u!:= argmax,czem (g5 1)< o)
set X! := arg esssup,.,|g(x; 1')|, and obtain the first (normalized)
EIM basis function g'(x) :=g(x; u')/g(x'; u'). We define W§ :=
span{g'(-)} and introduce the nodal value matrix G' € R"*! with
the single element G}, := g'(%") = 1.

Then, for 1 <M < Mpax — 1, we compute the approximation
gu(-; u) to g(-; u) from

M
guX: 1) ==Y Om(E" (), 3)
m=1

where the coefficient vector w (i) = [@1 (W), ..., ou(w)]" € RM is gi-
ven by the solution of the linear system

GMa(w) = g&; p), ... g & )" 4)
We choose the next parameter
Mgy = arg max {Ig(; i) — u (s W)l 1= o) (5)

“train

and define the residual r$,(x) := g(x; 4y, 1) — &u(X; Uy,1)- The next
interpolation point is then set to XM*!:= arg maxycq|r§;(x)|, and
the next EIM basis function is given by g¥*1(x) := r§, (x)/r§, (XM*1).
We define W%, ; := span{g™(-)|1 < m <M + 1}, and update our no-
dal value matrix G'*' e RM+D<M+D) with components GYT! .=
g"(®™),1 < m,n < M + 1. This procedure is either terminated if the
maximum dimension of the EIM space M. is reached or if the
maximum of ||g(; i) — gy (: )]~ over all e ZEN is smaller
than some desired tolerance &, > 0. We note that the determina-
tion of the coefficients () requires only ©(M?) computational cost
since GM is lower triangular with unity diagonal and that {g’"}%:] is
a basis for W$, [15,16].

Finally, we define a “Lebesgue constant” [29] Ay := Sup,.,
M VM(x)|, where VM(x) € W2, are the characteristic functions
of W%, satisfying Vm(xn) = 0mn, 1 < m,n < M, here, d,,, is the Kro-
necker delta symbol. We recall that (i) the set of all characteristic
functions {V"nﬁ'}fﬁ:l is a basis for W%, and (ii) the Lebesgue constant
A satisfies Ay, <2M — 1, see [15,16]. In applications, the actual
asymptotic behavior of Ay, is much better, as we shall observe
subsequently.

2.2. A Posteriori error estimation

Given an approximation gy(x; i) to g(x; ), we first define the
interpolation error as

e (i) = 18G5 1) = gu (5 Wl(q)- (6)

We recall that, if g(;u) € W%, ,, the interpolation error satisfies
&, (1) = o5, (1), where the error estimator, o%,(u), is defined as
o% (1) = |g(Xms1; 1) — 8y (Xm1; 1)|, see [15,16]. Since of,(u) is very
inexpensive to evaluate, it is used as an estimator for the function
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