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Discontinuous Galerkin Spectral Element Method. Starting from a common variational formulation we
make a full comparison of the two techniques from the points of view of accuracy, convergence, grid dis-
persion and stability.
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1. Introduction and motivations

The possibility of inferring the physical parameter distribution
of the Earth’s substratum, from information provided by elastic
wave propagations, has increased the interest towards computa-
tional seismology. Recent developments in this scientific discipline
concern with different numerical strategies as finite differences, fi-
nite elements, but the major efforts apply to spectral element
methods (see [1-7]).

A motivation is that, in geophysical or industrial applications, fi-
nite difference discretizations require very large systems of equa-
tions to model realistic rock properties and uniform meshes are
needed. On the other hand, when classical finite element methods
are employed for treating complex geometries, it is necessary to in-
vert the mass matrix.

The reasons for using spectral element-based approximations
can be summarized in the following lines. Firstly, the flexibility
in handling complex geometries, retaining the spatial exponential
convergence for locally smooth solutions. Secondly, since spectral
element methods are based on the weak formulation of the elasto-
dynamics equations, they handle naturally both interface continu-
ity and free boundary conditions, allowing very accurate
resolutions of evanescent interface and surface waves (of major
interest in seismology). Finally, spectral element methods retain
a high level parallel structure, thus well suited for parallel
computers.

However, when dealing with complex wave phenomena, such
as soil-structure interaction problems or seismic response of sed-
imentary basins, the geometrical and polynomial flexibility is an
important task for simulating correctly the wave-front field.

For this reason we consider two different non-conforming high-
order techniques, namely the Mortar Spectral Element Method
(MSEM) [8,9] and the Discontinuous Galerkin Spectral Element
Method (DGSEM) [10-12] to simulate seismic wave propagation
in heterogeneous media. In contrast to standard conforming dis-
cretizations, as Spectral Element Method (SEM) [13,14], these tech-
niques have the further advantages that they can accommodate
discontinuities, not only in the parameters, but also in the wave-
field, while preserving the energy.

Depending on the involved materials it is possible to make a
partition of the computational domain. Then, in each non-overlap-
ping subregion a spectral finite element discretization is employed.
The quadrilaterals/hexahedras do not have to match between
neighbouring subdomains, and different spectral approximation
degrees are allowed. Therefore, the continuity of the solution at
the skeleton of the decomposition is imposed weakly, either by
means of a Lagrange multiplier for the MSEM, or by penalizing
the jumps of the displacement on the skeleton in the DGSEM.

In the present work, starting from a displacement-based weak
formulation of the elastodynamics equation, we analyze stability,
convergence, accuracy, dissipation and dispersion for the MSEM
and DGSEM for the space discretization combined with second or-
der time integration scheme. In particular we prove a priori error
bounds for both the semi-discrete and fully-discrete non-conform-
ing methods.

A similar analysis is provided in the existing literature for a
slightly different Discontinuous Galerkin formulation, for dynamic
linear elasticity and viscoelasticity [12,15]. In fact the above formu-
lation involves an additional penalty term whose physical meaning
is unclear. Yet, other authors refer to that analysis when discussing

their Discontinuous Galerkin schemes [16,17]. Here we modify and
update the results of [12] to analyze the presented DGSEM.

In the MSEM case, at the best of our knowledge, such analysis
has never been carried out before in elastodynamics, but only for
elliptic and parabolic equations [8,18-20].

Since we are dealing with time-dependent problems, we also
take into account of the stability and dispersion property of our
numerical scheme.

For wave propagation problems, the grid dispersion criterion
determines the lowest number of nodes per wavelength such that
the numerical solution has an acceptable level of accuracy, while
the stability criterion determines the largest time step allowed
for explicit time integration schemes.

A general framework to study the numerical dispersion for the
SEM was developed in [21] and analyzed for the acoustic case up to
polynomial approximation degree equal to three. In [22] a com-
plete description for the elastic case is given, based on a Rayleigh
quotient approximation of the eigenvalue problem characterizing
the dispersion relation.

For the DGSEM, grid dispersion has been analyzed in [23,16]. In
particular in [23] the dispersion and dissipation errors of the
acoustic wave equation in one space dimension are derived using
the flux formulation. The results include polynomial approxima-
tion degree equal to three and conjectures on the extension to
higher degrees are given. Making use of the plane wave analysis,
in [16] a complete description of the grid dispersion properties is
carried out for both the acoustic and the elastic case.

At the best of our knowledge, for the MSEM no results are avail-
able for the grid dispersion properties regarding the elastic wave
equation.

For what concerns the stability, a classical numerical approach
to solve a second order initial value problem is provided by the
family of the Newmark methods [24]. The Leap-Frog Finite Differ-
ence Method is a special case of that family which is second order
accurate, explicit and conditionally stable, and is the most popular
one used in seismic modelling [4,21,25-27]. Other schemes like
Runge-Kutta or Taylor-Galerkin, are used too [17,3,7].

In this work we derive, for the Leap-Frog Method, stability
bounds linking the time step with the size of the elements and
the maximum wave velocity. All results obtained are compared
to those obtained with the conforming SEM case.

After introducing the elastodynamics problem and its varia-
tional formulation in Section 2, we describe in Section 3 the geo-
metrical and functional discretization of the problem within the
context of non-conforming approximations. In particular we derive
the Mortar and the Discontinuous Galerkin Spectral Formulations.
The algebraic aspects of the two methods are then described in
Section 4. Section 5 is focused on the convergence estimates while
Section 6 is devoted to the grid dispersion and stability analysis,
which are carried out for 2-d case. In Sections 7 and 8 we discuss
the property of accuracy and convergence of the MSEM and the
DGSEM, and present a geophysical application, namely the seismic
response of an alluvial basin, respectively. Finally in Section 9 we
report the proofs of the convergence estimates given in Section 5.

2. Problem formulation

Let us consider an elastic medium occupying a finite region
Q c R?, d=2,3, with boundary I" = 9Q and unit outward normal
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