Accepted Manuscript

Regular Article

Facile synthesis of Fe_2O_3 nanoparticles anchored on Bi_2MoO_6 microflowers with improved visible light photocatalytic activity

Shijie Li, Shiwei Hu, Junlei Zhang, Wei Jiang, Jianshe Liu

PII:	S0021-9797(17)30240-0
DOI:	http://dx.doi.org/10.1016/j.jcis.2017.02.069
Reference:	YJCIS 22096
To appear in:	Journal of Colloid and Interface Science
Received Date:	4 January 2017
Revised Date:	26 February 2017
Accepted Date:	27 February 2017

Please cite this article as: S. Li, S. Hu, J. Zhang, W. Jiang, J. Liu, Facile synthesis of Fe₂O₃ nanoparticles anchored on Bi₂MoO₆ microflowers with improved visible light photocatalytic activity, *Journal of Colloid and Interface Science* (2017), doi: http://dx.doi.org/10.1016/j.jcis.2017.02.069

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Facile synthesis of Fe₂O₃ nanoparticles anchored on Bi₂MoO₆ microflowers with improved visible light photocatalytic activity

Shijie Li^{a,b} *, Shiwei Hu^a, Junlei Zhang^{c,d}, Wei Jiang^a, Jianshe Liu^c

^aInnovation & Application Institute, Zhejiang Ocean University, Zhoushan, Zhejiang Province, 316022, China.

^bZhejiang Provincial Key Laboratory of Health Risk Factors for Seafood, Zhoushan Municipal Center for Disease Control and Prevention, Zhoushan, 316021, China

^cState Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China.

^dShanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP³), Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, PR China ^{*}Corresponding author. E-mail address: lishijie@zjou.edu.cn

Abstract: Constructing novel semiconductor heterojunctions is emerging as one of the efficient methods to develop excellent photocatalysts. Herein, we report the design and synthesis of Bi₂MoO₆ microflowers decorated by Fe₂O₃ nanoparticles as an efficient visible-light-driven photocatalyst *via* a simple solvothermal precipitation-calcination method. The asprepared Fe₂O₃/Bi₂MoO₆ heterojunctions were systematically characterized by using several techniques. The photocatalytic properties of these heterojunctions were estimated by degrading rhodamine B (RhB) and *para*-chlorophenol (4-CP) under visible light ($\lambda > 400$ nm). They showed much higher photocatalytic activity than pure Fe₂O₃ or Bi₂MoO₆. The heterojunction with Fe/Bi molar ratio of 0.2 presented the highest activity. The RhB degradation rate constant was about 4.8 times or 3.8 times higher than that of Bi₂MoO₆ or a mechanical mixture of Fe₂O₃ and Bi₂MoO₆. The remarkable enhanced photocatalytic activity

Download English Version:

https://daneshyari.com/en/article/4984818

Download Persian Version:

https://daneshyari.com/article/4984818

Daneshyari.com