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a b s t r a c t

In this paper, a numerical multiscale method is proposed for computing the response of structures made
of linearly non-aging viscoelastic and highly heterogeneous materials. In contrast with most of the
approaches reported in the literature, the present one operates directly in the time domain and avoids
both defining macroscopic internal variables and concurrent computations at micro and macro scales.
The macroscopic constitutive law takes the form of a convolution integral containing an effective relax-
ation tensor. To numerically identify this tensor, a representative volume element (RVE) for the micro-
structure is first chosen. Relaxation tests are then numerically performed on the RVE. Correspondingly,
the components of the effective relaxation tensor are determined and stored for different snapshots in
time. At the macroscopic scale, a continuous representation of the effective relaxation tensor is obtained
in the time domain by interpolating the data with the help of spline functions. The convolution integral
characterizing the time-dependent macroscopic stress–strain relation is evaluated numerically. Arbitrary
local linear viscoelastic laws and microstructure morphologies can be dealt with. Implicit algorithms are
provided to compute the time-dependent response of a structure at the macroscopic scale by the finite
element method. Accuracy and efficiency of the proposed approach are demonstrated through 2D and
3D numerical examples and applied to estimate the creep of structures made of concrete.

� 2011 Elsevier B.V. All rights reserved.

1. Introduction

Designing composite materials with tuned viscoelastic proper-
ties is a major concern in engineering. In polymer composites,
damping properties can be desired in tandem with strength prop-
erties. In concrete structures, reducing the magnitude of creep al-
lows diminution of the associated damage [16]. The related
experimental relaxation tests are extremely costly and can last
for months or years. Progresses in the design of high performance
concrete then require predictive models and simulation methods
taking into account the microstructure of the material.

Analytical methods for the homogenization of linear viscoelas-
tic media have been proposed since the works of Hashin [7,8],
who exploited the correspondence principle between linear elas-
ticity and viscoelasticity by mean of the Laplace transform. In the
Laplace space, classical homogenization methods such as the
self-consistent scheme [13,24,15,1,21,2] and Mori–Tanaka tech-
nique [25,6,18,5,3] can be applied. The main issue is then the inver-
sion of the Laplace transform which, in most cases, need to be
performed numerically (see e.g. [26,9,14]). Accuracy and computa-
tional costs of this numerical inversion are serious issues. When

applied to homogenization, the restrictive assumptions underlying
the analytical methods on the morphology and local constitutive
laws prevent them from being applied to complex realistic micro-
structures. Then, numerical method must be employed to solve the
microscale spatial equations. Some methodologies have been pro-
posed. For example, in [17], the microscopic spatial equations are
solved by the generalized cell method.

To overcome the limitations of approaches based on the Laplace
transform, alternative numerical methods operating in the time
domain have been suggested. Lahellec and Suquet [12] introduced
a scheme in which the notion of macroscopic internal variables re-
lated to an effective viscous strain is involved. Their method is
based on an incremental variational principle and the variational
approach of Ponte Castañeda [19]. Ricaud and Masson [20] pro-
posed a different way taking advantage of the Prony–Dirichlet ser-
ies expansion in the internal variable formulation. Another
possible methodology corresponds to a two-scale numerical proce-
dure [11,4] where each integration point of the macroscopic struc-
ture is associated to a representative volume element and, at every
time step, the macroscopic strains at each integration point are ta-
ken to be the boundary conditions for the relevant local problem.
The numerical solution to this problem gives the effective stresses.
These methodologies induce important computational costs due to
the nested numerical solvers and the storage of internal variables,

0045-7825/$ - see front matter � 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.cma.2011.06.012

⇑ Corresponding author.
E-mail address: julien.yvonnet@univ-paris-est.fr (J. Yvonnet).

Comput. Methods Appl. Mech. Engrg. 200 (2011) 2956–2970

Contents lists available at ScienceDirect

Comput. Methods Appl. Mech. Engrg.

journal homepage: www.elsevier .com/locate /cma

http://dx.doi.org/10.1016/j.cma.2011.06.012
mailto:julien.yvonnet@univ-paris-est.fr
http://dx.doi.org/10.1016/j.cma.2011.06.012
http://www.sciencedirect.com/science/journal/00457825
http://www.elsevier.com/locate/cma


even though progresses have been made by means of parallel com-
puting [4] or model reduction [28].

The purpose of this paper is to present an efficient and simple
methodology to compute the effective time-dependent response
of structures consisting of linearly viscoelastic heterogeneous
materials and undergoing arbitrary loadings. The homogenized
constitutive law of a linearly viscoelastic heterogeneous material
takes the form of a convolution integral involving an effective
relaxation tensor which cannot be in general determined analyti-
cally. One of the main steps of our approach is to numerically
determine all the components of the effective relaxation tensor di-
rectly in the time domain. This is realized as follows: (i) a represen-
tative volume element (RVE) for the microstructure of the linearly
viscoelastic heterogeneous material in question is chosen and sub-
jected to appropriate relaxation test loadings; (ii) the overall time-
dependent response of the RVE is computed by using some effi-
cient algorithms (see e.g. [10,22,23]); (iii) the numerical results ob-
tained at different time steps and stored during the previous
preliminary computations are interpolated with some appropriate
spline functions. Then, the convolution integral is evaluated
numerically so as to yield the macroscopic stress–strain relation
for the computation of structures.

Compared to existing approaches, the one elaborated in the pres-
ent work offers the following advantages: (a) the method operates
directly in the time domain and avoids the drawbacks of the tech-
niques based on the Laplace transform; (b) the formulation needs
not to introduce any macroscopic internal variables; (c) in contrast
with the numerical methods using concurrent calculations at the
microscopic and macroscopic scales, the data required to determine
the effective constitutive laws can be calculated in a preliminary
step, so that, once they are stored, structure calculations can be car-
ried out without solving any new problems on the RVE (for a related
work on nonlinear homogenization, see [27]); (d) the implementa-
tion of the proposed approach is simple and classical implicit time-
stepping algorithms can be directly employed.

The paper is organized as follows. In the next section, we briefly
review the equations and algorithms for formulating and solving
the local viscoelastic problem defined over an RVE. In Section 3
we present the methodology for sampling and interpolating the
values of the effective relaxation tensor. Fully implicit algorithms
are then detailed to compute the macroscopic structural response.
In Section 4, we illustrate the proposed method and test its accu-
racy and efficiency through different 2D and 3D examples, with
applications to the analysis of structures made of concrete.

2. Microscopic viscoelastic problem

We consider a structure made of a heterogeneous material
whose phases are linearly and non-aging viscoelastic. We assume
that the microstructure is defined by a representative volume ele-
ment occupying a domain X, as depicted in Fig. 1(b). The sub-do-
mains occupied by the different phases are X(r) (r = 1,2, . . .,R)
such that X ¼

SR
r¼1X

ðrÞ. In this section, we review equations and
algorithms for solving linear homogeneous viscoelastic problems.
We focus on the generalized Maxwell model which, with an infi-
nite number of branches, is the most general one for linear
viscoelasticity.

2.1. Linear viscoelasticity: generalized Maxwell model

2.1.1. 1D formulation
A linearly viscoelastic material can be characterized by a stress–

strain relationship in the form of a convolution integral:

rðtÞ ¼
Z t

�1
Gðt � sÞdeðsÞ

ds
ds; ð1Þ

where G(t) is the relaxation modulus function. The integral in (1) is
a Riemann–Stieltjes integral. It will be convenient to consider only
time-dependent stress r(t) and strain e(t) which are null for t < 0,
and which may have jump discontinuities at t = 0. In this case, we
write (1) in the form

rðtÞ ¼
Z t

0
Gðt � sÞdeðsÞ

ds
dsþ GðtÞeð0Þ: ð2Þ

We consider the generalized Maxwell model as depicted in Fig. 2.
The corresponding relaxation modulus function is given by (see de-
tails in Appendix A):

GðtÞ ¼ E1 þ
XN

i¼1

Ei expð�t=siÞ; ð3Þ

where N is the number of parallel viscoelastic elements, E1, Ei are
Young’s moduli as shown in Fig. 2, and si are the relaxation times
of the parallel viscoelastic elements. Substituting (3) into (2), the to-
tal stress is given by

rðtÞ ¼
Z t

0

_r1ðsÞdsþ
XN

i¼1

Z t

0
ci expð�ðt � sÞ=siÞ _r1ðsÞds

þ 1þ
XN

i¼1

ci expð�t=siÞ
 !

r1ð0Þ; ð4Þ

where r1(t) = E1e(t) and ci = Ei/E1. By introducing

qi ¼
Z t

0
ci exp½�ðt � sÞ�=si _r1ðsÞds ð5Þ

as internal stress variables, we finally obtain

rðtÞ ¼
XN

i¼1

qi þ
XN

i¼1

ci expð�t=siÞr1ð0Þ þ r1ðtÞ: ð6Þ

Fig. 1. (a) Macroscopic structure and (b) representative volume element.

Fig. 2. Schematic representation of the generalized Maxwell model.

A.B. Tran et al. / Comput. Methods Appl. Mech. Engrg. 200 (2011) 2956–2970 2957



Download English Version:

https://daneshyari.com/en/article/498488

Download Persian Version:

https://daneshyari.com/article/498488

Daneshyari.com

https://daneshyari.com/en/article/498488
https://daneshyari.com/article/498488
https://daneshyari.com

