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a b s t r a c t

Sensitivity analysis provides qualitative and quantitative information on the behaviour of the model
under study, and offers an access to gradients that may be used for identification purposes. Such precious
information may be obtained at a low development cost applying a generic automatic differentiation
(AD) tool to the computer code implementing this model. Nonlinear residual problems solved through
a path following method may be addressed too. In this paper, AD techniques are adapted to the Tay-
lor-based asymptotic numerical method. A sensitivity study of a laminated glass beam to the perturba-
tion of some material and geometric parameters, and the perturbation of elementary stiffness matrices
illustrates the method.

� 2011 Elsevier B.V. All rights reserved.

1. Introduction

Within finite element formulations implemented in simulation
codes, sensitivities [1,2] may be either (i) approximated by a finite
difference scheme (FD), or computed through: (ii) the implementa-
tion of differentiated continuous equations, (iii) the implementa-
tion of differentiated discrete equations, or (iv) the differentiation
of the code implementing the discrete equations, willingly per-
formed using an automatic differentiation (AD) tool [3]. In a
nutshell, AD views any computer code, even a large one, as a se-
quence of elementary operations and intrinsic functions, control
and do-loop statements provided by the programming language.
The AD is then performed applying the chain rule to this sequence,
statement by statement, operation by operation. Using AD, com-
puted derivatives are exact up to the machine precision. This gener-
ic technique constitutes a reliable solution for higher-order
differentiation too, as demonstrated with the AD version [4] of
the asymptotic numerical method (ANM) [5–7] for the solution of
nonlinear problems through a continuation procedure. In the
ANM, under analyticity assumptions, solutions are approximated
as truncated Taylor series to be introduced in the discrete PDE prob-
lem of interest. This yields a sequence of linear problems involving
the same matrix but different higher-order right-hand side terms.
The differentiations stages are automated using the AD tool Dia-

mant [8,9]. Sensitivities of ANM solutions were briefly presented
in [10]. The present paper proposes a more thorough discussion
on the subject to highlight the Diamant’s capabilities in terms of
sensitivity computations. A peculiar attention is brought to gener-
ality, ease of use and efficiency, as well as to the mechanical interest
of such calculation.

These last decades, smart materials and adaptive structures have
been extensively studied for a better knowledge and the improve-
ment of their multifunctional properties. Sandwich structures
including viscoelastic and/or piezoelectric layers are commonly
used in industrial applications for noise and vibration control. Their
modelling often results in nonlinear problems. Beside, sensitivity
analysis tends to become a classical tool [11]. Applications are con-
cerned with imperfection sensitivity [12], damage location [13] and
vibration analysis [14,15]. Several approaches may be foreseen to
compute sensitivities and to determine the parameters of larger
influence. The choice of one method or the other usually depends
on the complexity of the modelling equations, the availability of
measurement devices and the number of parameters to study. For
instance, sensitivities may be achieved through either laboratory
experiments [16] or analytical approaches that can be successfully
completed on rather simple systems of equations [14,17]. Most of
the analytical studies, even based on a finite element formulation,
assumes a manual differentiation to tackle peculiar problems
[15,17]. Even Choi et al. [18,14] proposed a unified approach for de-
sign sensitivity analysis of nonlinear structural problems, this does
not apply in a straightforward manner to the solution of nonlinear
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problems solved by asymptotic numerical method (ANM). In this
paper, the AD tool Diamant is adapted to sensitivity computations.
A sensitivity study of a laminated glass beam to the perturbation of
some material and geometric parameters, and the perturbation of
elementary stiffness matrices illustrates the method.

The outline of the paper is as follows. Theoretical aspects about
AD, the Diamant version of the ANM and sensitivity analysis, are
presented in Section 2. Implementation details are discussed in
Section 3. Numerical experiments performed on a laminated glass
beam are reported in Section 4. A summary and an outlook are pro-
vided to conclude.

2. Sensitivity computations with Diamant

Structural Mechanics modelling depends on some material and
geometrical parameters p. In this regard, a crucial question that
emerges immediately is this: what is the sensitivity of model’s out-
puts to a given perturbation in the input parameters? This question
can be answered at different levels of certainty by different ap-
proaches, from a qualitative manner obtained from experimental
measurements of results stemming from successive trials, to quan-
titative methods based on the computation of first or second order
derivatives. Within the last approach, great advances have been
achieved with the development of AD [3]. Although this procedure
has been applied with success in several scientific domains, it has
been little applied in Structural Mechanics [1], and still less on
nonlinear problems solved via a continuation technique.

This section first discusses AD basics for a better understanding
of the diverse differentiation stages involved in the presented
numerical process. Second, the ANM is turned into a generic AD-
based method, namely the Diamant approach, for the solution of
nonlinear continuation problems. A natural automation of sensitiv-
ity computations is then presented.

2.1. AD in a nutshell

Automatic differentiation (AD) is a set of techniques that en-
ables to augment computer codes with derivative computation
features. Within AD, any program execution / is viewed as a com-
position of arithmetic operators and intrinsic functions. Its differ-
entiation may be then automated using the chain rule and
applying standard rules such as ‘‘the derivative of a sum is the
sum of the derivatives’’, and so forth.

Higher-order differentiation is achieved through classical recur-
rence formulas. For instance, the multiplication r = x ⁄ y is differen-
tiated with respect to x and y applying the so-called Leibniz
formula,

rk ¼
Xk

j¼0

xj � yk�j; ð1Þ

where, as defined in [3], xk, yk and rk are Taylor coefficients at order
k, i.e. scaled coefficients in the Taylor expansion of x, y and r
respectively.

Two classes of AD tools exist. Given a computer code, source
transformation tools like Tapenade [19] and ADiMat [20] are able
to produce source codes containing derivative computation state-
ments. These are mainly concerned with first order differentiation
(in tangent linear mode and/or adjoint mode). Operator overload-
ing tools like Adol-C [21], Rapsodia [22] and Diamant provide high-
er-order differentiation. The Taylor coefficient calculation is
achieved by means of an operator overloading library as the vehi-
cle of attaching derivative computations to the arithmetic opera-
tors and intrinsic functions provided by the programming
language. The interested reader is referred to the automatic differ-

entiation research community’s web page http://www.autodiff.org
for an exhaustive description of the available tools and usages.

2.2. The DIAMANT approach

The asymptotic numerical method (ANM) is a Taylor-based
method devised for the solution of smooth nonlinear equilibrium
systems of equations in general, and mechanical PDE problems in
particular. Nonlinear problems we address are written in the gen-
eric residual form

Rðuða; pÞ; kða;pÞÞ ¼ 0; ð2Þ

where Rðuða; pÞ; kða;pÞÞ and u(a,p) are vectors of Rn, and k(a,p) is a
real-valued scalar parameter. For the sake of conciseness, the func-
tional dependencies on modelling parameter p are hereafter omit-
ted. The under-determined system (2) is usually closed adding the
pseudo arc-length equation,

a ¼ uðaÞ � uð0Þ; @u
@a
ð0Þ

� �
þ ðkðaÞ � kð0ÞÞ @k

@a
ð0Þ; ð3Þ

where a is the path parameter.
Assuming R;u and k to be analytical functions, the ANM

approximates the solutions of (2) and (3) as Taylor expansions
truncated at order K, that is

ðuðaÞ; kðaÞÞ ¼
XK

k¼0

akuk;
XK

k¼0

akkk

 !
; ð4Þ

where Taylor coefficients uk and kk are, respectively, equal to
1
k!

@ku
@ak ð0Þ and 1

k!
@kk
@ak ð0Þ. Within the ANM, series (4) are introduced in

the actual nonlinear problem. This yields a problem-dependent se-
quence of K linear systems involving the same tangent linear ma-
trix, and higher-order differentiation recurrence formula to be
written by hand [7]. For the sake of clarity the dependence in a is
omitted in the following.

The Diamant approach [4] is the AD-based version of the ANM.
As described in [8,9], Faá di Bruno generalized chain rule formula
allows to split the Taylor coefficient Rk into three parts,

Rk ¼ fR1ju1¼Id;k1¼0guk þ fR1ju1¼0;k1¼1gkk þ fRkjuk¼0;kk¼0g ¼ 0; ð5Þ

where fR1ju1¼Id;k1¼0g is the tangent linear matrix of R differentiated
with respect to u; fR1ju1¼0;k1¼1g is the tangent linear contribution of
R differentiated with respect to k, and fRkjuk¼0;kk¼0g represents high-
er-order contributions. In the latter, the use of null Taylor coeffi-
cients for uk and kk cancels the tangent linear contributions
already taken into account in the first two terms. Such generic
decomposition allows for the automation of the ANM [8,9]:

� the Jacobian fR1ju1¼Id;k1¼0g is the same over the order. It may be
constructed in an efficient way taking into account the finite
element assembly mechanism [10],
� the higher-order term fRkjuk¼0;kk¼0gmay be efficiently computed

using a peculiar Diamant operator overloading library [8].

Consequently, the sequence of K generic linear systems related
to the ANM and the path equation may be written

fR1ju1¼Id;k1¼0guk þ fR1ju1¼0;k1¼1gkk ¼ �fRkjuk¼0;kk¼0g;
a ¼ ðuk � u0Þu1 þ ðkk � k0Þk1:

�
ð6Þ

In practice, the calculation of fRkjuk¼0;kk¼0g and the solution of (6) are
performed in an iterative manner from order 1 to order K.

2.3. Sensitivity computations

Linear systems (6) depend on modelling parameters p. In the
ANM/Diamant context, sensitivities @uk

@p and @kk
@p of Taylor coefficients
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