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a b s t r a c t

Nickel selenide/reduced graphene oxide (Ni0.85Se/rGO) nanosheet composite is synthesized by a facile
hydrothermal process and used as counter electrode (CE) for dye-sensitized solar cells (DSSC). The
Ni0.85Se/rGO film spin-coated on FTO show prominent electrocatalytic activity toward I3

�/I�. The electro-
catalytic ability of Ni0.85Se/rGO film is verified by photocurrent-voltage curves, cyclic voltammetry, elec-
trochemical impedance spectroscopy and Tafel polarization curves. On account of its decent electrical
conductivity and superior electrocatalytic activity, the DSSC using optimal Ni0.85Se/rGO CE achieves a
power conversion efficiency (PCE) of 9.75%, while the DSSC based on sputtered Pt CE only obtains a
PCE of 8.15%.

� 2017 Elsevier Inc. All rights reserved.

1. Introduction

Dye-sensitized solar cell (DSSC) has received more and more
attention for its application in green energy since its appearance
in 1991 [1]. The best power conversion efficiency (PCE) of DSSC
has come to 14.7% with a co-photosensitized method using
alkoxysilyl-anchor dye and carboxy-anchor organic dye [2]. Gener-

ally, a DSSC is made up of three important components, dye-
adsorbed TiO2 film, electrolyte which comprises redox couple of
iodide/triiodide (I�/I3�), and a platinum (Pt) counter electrode
(CE). Among them, CE adjusts the catalytic reduction of redox cou-
ples, exerting an influence on PCE [3]. On the other hand, Pt, the
most-common used CE material, is high cost and low natural abun-
dance, which impose restrictions on the commercialization of
DSSC. Based on these thoughtfulness, many substitute materials
have been proposed. These substitute materials cover carbon
materials [4–7], alloy materials [8–10], conducting polymers
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[11–13] and transition metal compounds [14–16]. Also, transition
metal compounds include carbides, nitrides and chalcogenide.
Among these substitutes, transition metal compounds are less
expensive and abundant on earth. What’s more, they have excel-
lent electrocatalytic activity, indicating the high potential of
replace Pt as CEs in DSSC. In addition, grapheme, as a two-
dimensional material, is endowed with versatile physical proper-

ties and tunable photoelectrochemical properties. Even though
graphene has a poor electro-catalytic activity, it has an admirable
electro-conductivity and a large surface area due to its two-
dimensional structure [17]. Most important of all, its large surface
area can support catalytic material, causing more active sites
whose role is reducing I3� to I� increase. Furthermore, a plenty of
researches demonstrate that the introduction of graphene in CE
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Fig. 1. (a) XRD pattern of Ni0.85Se and Ni0.85Se/rGO powder, (b) Raman spectra for Ni0.85Se CE and Ni0.85Se/rGO CEs.

Fig. 2. TEM images of (a) Ni0.85Se, (b) Ni0.85Se/rGO0.05, (c) Ni0.85Se/rGO0.1, and (d) Ni0.85Se/rGO0.15.
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