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This article presents a generalization of the recently proposed Finite Cell Method to thin-walled struc-
tures. This approach uses a combination of well known Fictitious Domain Methods with high order hier-
archical Ansatz spaces known from the p-version of the Finite Element Method. Whereas the original
concept embeds a three-dimensional structure in a simple domain being meshed into a grid of cube
shaped cells, the extension presented in this paper applies the fictitious domain approach to a two-
dimensional master domain defined in the parameter plane of the geometric model. Implementation
details are discussed and numerical benchmark problems show the high accuracy and computational effi-
ciency of the new approach. It is also remarked, that the present approach can easily be carried over to
isogeometric analysis, opening an attractive possibility to simulate trimmed NURBS-surfaces.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Since the early days of the Finite Element Method a lot of re-
search has been devoted to get around the necessity to model
the boundary of a domain of computation exactly and thus to ease
the effort of mesh generation. These approaches, each with their
individual mathematical or algorithmic features, are known as Fic-
titious Domain Methods [1-4], Embedding Domain Methods [5-7]
or Immersed Boundary Methods [8,9]. Also many variants of mesh-
free or meshless methods [10-13] and Extended Finite Element
Methods [14,15] or Level Set Methods [16,17] can be seen in this
category. An overview of the huge body of literature is given, for
example, in [18-20]. Common to all these approaches is the
embedding of the domain of computation €2 into an extended do-
main €, typically with a geometrically simple shape, which can
easily be discretized in a structured mesh or even a Cartesian grid
for computation. This mesh or grid does not necessarily follow the
boundary of the original domain €.

The Finite Cell Method (FCM), recently proposed in [21,22],
uses some of the basic concepts of fictitious domain approaches,
but extends them to high order Ansatz spaces known from the p-
version of the Finite Element Method. Dividing €. into a (regular)
grid of cells and applying an Ansatz with higher order polynomi-
als, the FCM has been investigated for linear elasticity in 2D and

* Corresponding author. Tel.: +49 89 289 23048; fax: +49 89 289 250 51.
E-mail address: rank@bv.tum.de (E. Rank).

0045-7825/$ - see front matter © 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.cma.2011.06.005

3D [21,22], for topology optimization problems [23,24], geometri-
cally nonlinear problems [25,26] and for problems in elastoplas-
ticity [27]. Adaptive schemes with hierarchical spline base
functions have been developed [28] and a very fast implementa-
tion using pre-integrated stiffness matrices has been used for
interactive 3D-simulation in a computational steering system
with application in biomedical engineeering [29,30]. The Finite
Cell Method proves in all these cases to have significant advanta-
ges over classical Finite Element Methods or over low order ficti-
tious domain approaches. In addition to the (very important)
practical benefit of relieving from the necessity of mesh genera-
tion it shows astonishing accuracy and superior computational
efficiency.

Yet, one significant limitation of the FCM derives from the
requirement that features of the domain of computation Q (e.g.
holes, girders) should not have dimensions which are significantly
smaller than the size of the computational cells. This makes it for
the original method inefficient or practically even impossible to
simulate thin-walled structures like beams, frames or shells. In this
paper the method is, therefore, extended to general three-dimen-
sional thin-walled structures, separating the description of the
structural geometry from the fictitious domain approach. Whereas
the 'cells’ with their higher order Ansatz are defined by a Cartesian
grid in parameter space, the structure in physical space is covered
by a geometry-aligned mesh of generalized hexahedra with a
shape being defined by the geometric model. This model can be
based on B-splines, NURBS or any other description suitable in
geometric modeling. From a conceptual point of view this
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approach has several similarities to the Isogeometric Element
Method [31] and opens a very simple and efficient way to use
‘trimmed patches’ as basic geometric objects.

This paper is organized as follows: In the next section we give a
short summary of the basic ideas of the FCM. Section 4 will extend
the approach to three-dimensional thin-walled structures. In Sec-
tion 5 we will first demonstrate the high accuracy and efficiency
of the method on a modification of a classical shell benchmark
problem and finally show a geometrically complex example of a
structural vibration analysis.

2. The Finite Cell Method: basic formulations

For completeness of this paper we briefly summarize the basic
concepts of the Finite Cell Method, closely following the descrip-
tion in [21,22]. We restrict the formulation to linear elasticity in
3D (for clarity, all figures are given in 2D), yet remark, that an
extension to nonlinear problems like elastoplasticity is possible,
see [27].

Let us assume on a three-dimensional physical domain 2 a
problem of linear elasticity, described by the weak form of equilib-
rium as

B(u,v) = F(v), (1)

where the bilinear part is
B(u,v) = /[L v]'C[Lu)dQ (2)
Q

in which u is the displacement, v is the test function, L is the stan-
dard strain-displacement operator and C is the elasticity matrix.
We assume Dirichlet boundary conditions u along I'p and a Neu-
mann boundary I'y with prescribed tractions, 02 = I'p U I'y, and
I'pN I'y=0. The linear functional

Fv)= / vifdo+ / vitdr (3)

Q I'n

takes the volume loads f and prescribed tractions t into account.
The original physical domain can now be embedded in the do-

main Q. with the boundary 9€2, (Fig. 1). Following Nerrtaanmdki and

Tiea [32], the displacement variable is extended as:

L
u Y e )
uw? in Q. \Q

and continuity of displacements and tractions is assumed at the
interface between Q and Q.\Q:
Boundary conditions are set for €2,

u=0 on l,p,

t=0 on [.y. ()

in which I, p and I y are the Dirichlet and Neumann boundaries of
Q. respectively, 0Q,=T'epU TN, and I'epN I'en=0. The weak

form of the equilibrium equation for the embedding domain €, is
given as

BX(u,v) = FX(V), (6)

where the bilinear form is

Bi(u,v) = /Q [L v]"CY[L u]dQ 7)
in which

C, =oC (8)
is the elasticity matrix of the embedding domain, with

ax) =10 VxeQ, 9)
00<ax)<1.0 Vxe .\ Q. (10)

In the case of a(x) =0 for x € Q.\Q the bilinear functional turns to
B (u,v) = / L v oL ujdQ
= / [L v]'CL u]dQ + / [L v]"O[L uldQ = B(u,v). (11)
Jao JQe\Q
The linear functional

Fiv) = / vTocfdQ+/ vitdr +/ vitdr (12)
Qe Iy Ten

considers the volume loads f, prescribed traction along I'y interior

to Q. and prescribed traction at the boundary of the embedding do-

main. Due to Eq. (5), the last term in (12) can be assumed 0.

As for the bilinear function it can immediately be seen that for
a(x) =0 where x € .\ Q the extended load functional (12) equals
(3). Furthermore, for o - 0 in Q,\Q the solution u? of (6) con-
verges towards the solution u of (1).

The embedding domain is now discretized in a Cartesian grid
which is independent of the original domain. These “finite ele-
ments” of the embedding domain do not necessarily fulfill the
usual geometric properties of elements for the original domain
Q, as they may be intersected by 9€2. To distinguish them from
classical elements they are called finite cells. Fig. 2 illustrates the
situation for a two-dimensional setting.

At the discretized level, the weak form (7) turns into

Bi(u,v) = Z /Q L v]"%C[L u]dQ. (13)

In each cell the displacement variable is approximated as
u = NU, (14)

where N denotes the matrix of shape functions and U€ is the vector
of unknowns associated to the cell ¢ under consideration. As usual,
the product LN is denoted as strain-displacement matrix B. Our
implementation, [33], uses hexahedrals with hierarchical shape

e+

0.\

Fig. 1. The domain Q is embedded in Q..
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