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a b s t r a c t

This article presents a generalization of the recently proposed Finite Cell Method to thin-walled struc-
tures. This approach uses a combination of well known Fictitious Domain Methods with high order hier-
archical Ansatz spaces known from the p-version of the Finite Element Method. Whereas the original
concept embeds a three-dimensional structure in a simple domain being meshed into a grid of cube
shaped cells, the extension presented in this paper applies the fictitious domain approach to a two-
dimensional master domain defined in the parameter plane of the geometric model. Implementation
details are discussed and numerical benchmark problems show the high accuracy and computational effi-
ciency of the new approach. It is also remarked, that the present approach can easily be carried over to
isogeometric analysis, opening an attractive possibility to simulate trimmed NURBS-surfaces.

� 2011 Elsevier B.V. All rights reserved.

1. Introduction

Since the early days of the Finite Element Method a lot of re-
search has been devoted to get around the necessity to model
the boundary of a domain of computation exactly and thus to ease
the effort of mesh generation. These approaches, each with their
individual mathematical or algorithmic features, are known as Fic-
titious Domain Methods [1–4], Embedding Domain Methods [5–7]
or Immersed Boundary Methods [8,9]. Also many variants of mesh-
free or meshless methods [10–13] and Extended Finite Element
Methods [14,15] or Level Set Methods [16,17] can be seen in this
category. An overview of the huge body of literature is given, for
example, in [18–20]. Common to all these approaches is the
embedding of the domain of computation X into an extended do-
main Xe, typically with a geometrically simple shape, which can
easily be discretized in a structured mesh or even a Cartesian grid
for computation. This mesh or grid does not necessarily follow the
boundary of the original domain X.

The Finite Cell Method (FCM), recently proposed in [21,22],
uses some of the basic concepts of fictitious domain approaches,
but extends them to high order Ansatz spaces known from the p-
version of the Finite Element Method. Dividing Xe into a (regular)
grid of cells and applying an Ansatz with higher order polynomi-
als, the FCM has been investigated for linear elasticity in 2D and

3D [21,22], for topology optimization problems [23,24], geometri-
cally nonlinear problems [25,26] and for problems in elastoplas-
ticity [27]. Adaptive schemes with hierarchical spline base
functions have been developed [28] and a very fast implementa-
tion using pre-integrated stiffness matrices has been used for
interactive 3D-simulation in a computational steering system
with application in biomedical engineeering [29,30]. The Finite
Cell Method proves in all these cases to have significant advanta-
ges over classical Finite Element Methods or over low order ficti-
tious domain approaches. In addition to the (very important)
practical benefit of relieving from the necessity of mesh genera-
tion it shows astonishing accuracy and superior computational
efficiency.

Yet, one significant limitation of the FCM derives from the
requirement that features of the domain of computation X (e.g.
holes, girders) should not have dimensions which are significantly
smaller than the size of the computational cells. This makes it for
the original method inefficient or practically even impossible to
simulate thin-walled structures like beams, frames or shells. In this
paper the method is, therefore, extended to general three-dimen-
sional thin-walled structures, separating the description of the
structural geometry from the fictitious domain approach. Whereas
the ’cells’ with their higher order Ansatz are defined by a Cartesian
grid in parameter space, the structure in physical space is covered
by a geometry-aligned mesh of generalized hexahedra with a
shape being defined by the geometric model. This model can be
based on B-splines, NURBS or any other description suitable in
geometric modeling. From a conceptual point of view this
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approach has several similarities to the Isogeometric Element
Method [31] and opens a very simple and efficient way to use
’trimmed patches’ as basic geometric objects.

This paper is organized as follows: In the next section we give a
short summary of the basic ideas of the FCM. Section 4 will extend
the approach to three-dimensional thin-walled structures. In Sec-
tion 5 we will first demonstrate the high accuracy and efficiency
of the method on a modification of a classical shell benchmark
problem and finally show a geometrically complex example of a
structural vibration analysis.

2. The Finite Cell Method: basic formulations

For completeness of this paper we briefly summarize the basic
concepts of the Finite Cell Method, closely following the descrip-
tion in [21,22]. We restrict the formulation to linear elasticity in
3D (for clarity, all figures are given in 2D), yet remark, that an
extension to nonlinear problems like elastoplasticity is possible,
see [27].

Let us assume on a three-dimensional physical domain X a
problem of linear elasticity, described by the weak form of equilib-
rium as

Bðu;vÞ ¼ FðvÞ; ð1Þ

where the bilinear part is

Bðu;vÞ ¼
Z

X
½L v�T C½Lu�dX ð2Þ

in which u is the displacement, v is the test function, L is the stan-
dard strain–displacement operator and C is the elasticity matrix.
We assume Dirichlet boundary conditions �u along CD and a Neu-
mann boundary CN with prescribed tractions, oX = CD [ CN, and
CD \ CN = ;. The linear functional

FðvÞ ¼
Z

X
vT f dXþ

Z
CN

vT�tdC ð3Þ

takes the volume loads f and prescribed tractions �t into account.
The original physical domain can now be embedded in the do-

main Xe with the boundary oXe (Fig. 1). Following NEITTAANMäKI and
TIBA [32], the displacement variable is extended as:

u ¼ u1 in X

u2 in Xe nX

(
ð4Þ

and continuity of displacements and tractions is assumed at the
interface between X and XenX:

Boundary conditions are set for oXe

�u ¼ 0 on Ce;D;

�t ¼ 0 on Ce;N:
ð5Þ

in which Ce,D and Ce,N are the Dirichlet and Neumann boundaries of
Xe respectively, oXe = Ce,D [ Ce,N, and Ce,D \ Ce,N = ;. The weak

form of the equilibrium equation for the embedding domain Xe is
given as

Ba
e ðu;vÞ ¼ F a

e ðvÞ; ð6Þ

where the bilinear form is

Ba
e ðu;vÞ ¼

Z
Xe

½L v�T Ca
e ½L u�dX ð7Þ

in which

Ca
e ¼ aC ð8Þ

is the elasticity matrix of the embedding domain, with

aðxÞ ¼ 1:0 8x 2 X; ð9Þ
0:0 6 aðxÞ 6 1:0 8x 2 Xe nX: ð10Þ

In the case of a(x) = 0 for x 2XenX the bilinear functional turns to

Ba
e ðu;vÞ ¼

Z
Xe

½L v�TaC½L u�dX

¼
Z

X
½L v�T C½L u�dXþ

Z
XenX
½L v�T 0½L u�dX ¼ Bðu;vÞ: ð11Þ

The linear functional

F a
e ðvÞ ¼

Z
Xe

vTaf dXþ
Z

CN

vT�tdCþ
Z

Ce;N

vT�tdC ð12Þ

considers the volume loads f, prescribed traction along CN interior
to Xe and prescribed traction at the boundary of the embedding do-
main. Due to Eq. (5)2, the last term in (12) can be assumed 0.

As for the bilinear function it can immediately be seen that for
a(x) = 0 where x 2XenX the extended load functional (12) equals
(3). Furthermore, for a ? 0 in XenX the solution ua

e of (6) con-
verges towards the solution u of (1).

The embedding domain is now discretized in a Cartesian grid
which is independent of the original domain. These ‘‘finite ele-
ments’’ of the embedding domain do not necessarily fulfill the
usual geometric properties of elements for the original domain
X, as they may be intersected by oX. To distinguish them from
classical elements they are called finite cells. Fig. 2 illustrates the
situation for a two-dimensional setting.

At the discretized level, the weak form (7) turns into

Ba
e ðu;vÞ ¼

Xnc

c¼1

Z
Xc

½L v�TaC½L u�dX: ð13Þ

In each cell the displacement variable is approximated as

u ¼ NUc; ð14Þ

where N denotes the matrix of shape functions and Uc is the vector
of unknowns associated to the cell c under consideration. As usual,
the product LN is denoted as strain–displacement matrix B. Our
implementation, [33], uses hexahedrals with hierarchical shape

Fig. 1. The domain X is embedded in Xe.
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