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a b s t r a c t

We present a new method to construct a trivariate T-spline representation of complex genus-zero solids
for the application of isogeometric analysis. The proposed technique only demands a surface triangula-
tion of the solid as input data. The key of this method lies in obtaining a volumetric parameterization
between the solid and the parametric domain, the unitary cube. To do that, an adaptive tetrahedral mesh
of the parametric domain is isomorphically transformed onto the solid by applying a mesh untangling
and smoothing procedure. The control points of the trivariate T-spline are calculated by imposing the
interpolation conditions on points sited both on the inner and on the surface of the solid. The distribution
of the interpolating points is adapted to the singularities of the domain in order to preserve the features
of the surface triangulation.

� 2011 Elsevier B.V. All rights reserved.

1. Introduction

CAD models usually define only the boundary of a solid, but the
application of isogeometric analysis [2,3,10] requires a fully volu-
metric representation. An open problem in the context of isogeo-
metric analysis is how to generate a trivariate spline represen
tation of a solid starting from the CAD description of its boundary.
As it is pointed by Cotrell et al. in Ref. [10], ‘‘the most significant chal-
lenge facing isogeometric analysis is developing three-dimensional
spline parameterizations from surfaces’’.

There are only a few works addressing this problem, and they
all have in common the use of harmonic functions to establish
the volumetric parameterization [19,21–23,30].

For example, Li et al. [19] construct a harmonic volumetric map-
ping through a meshless procedure by using a boundary method.
The algorithm can be applied to any genus data but it is complex
and requires placing some source and collocation points on an off-
set surface. Optimal results of source positions are unknown, and
in practice they are chosen in a trial-and-error manner or with
the help of human experience. Therefore, the problem is ill-condi-
tioned and regular system solvers often fail.

Martin et al. [22] and Martin and Cohen [23] present a method-
ology based on discrete harmonic functions to parameterize a
solid. They solve several Laplace’s equations, first on the surface

and then on the complete 3-D domain with FEM, and use a
Laplacian smoothing to remove irregularities. During the process,
new vertices are inserted in the mesh and retriangulations (in 2-
D and 3-D) are applied in order to introduce the new vertex set
in the mesh. The user has to make an initial choice of two critical
points to establish the surface parameterization and to fix a seed
for generating the skeleton. The parameterization has degeneracy
along the skeleton. The extension to genus greater than zero [23]
requires finding suitable midsurfaces.

We propose a different approach in which the volumetric param-
eterization is accomplished by transforming a tetrahedral mesh
from the parametric domain to the physical domain. This is a special
feature of our procedure; we do not have to give the tetrahedral
mesh of the solid as input, as it is a result of the parameterization
process. Another characteristic of our work is that we use an interpo-
lation scheme to fit a trivariate B-spline to the data, instead of an
approximation, as other authors do. This performs a more accurate
adaptation of the T-spline to the input data.

One of the main drawbacks of NURBS (see for example [26]) is
that they are defined on a parametric space with a tensor product
structure, making the representation of detailed local features inef-
ficient. This problem is solved by the T-splines, a generalization of
NURBS conceived by Sederberg et al. [27] that enables the local
refinement. The T-splines are a set of functions defined on a T-
mesh, a tiling of a rectangular prism in R3 allowing T-junctions
(see [2,27]).

In this paper we present a new method for constructing volu-
metric T-meshes of genus-zero solids whose boundaries are defined
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by surface triangulations. Our procedure can be summarized in two
stages. In the first one, a volumetric parameterization of the solid is
developed. Broadly speaking, we can consider that the construction
of a volumetric parameterization is a process in which an adaptive
tetrahedral mesh, initially defined in the unitary cube C ¼ ½0;1�3, is
deformed until it achieves the shape of the solid (the physical do-
main). This deformation only affects the positions of the nodes, that
is, there is not any change in their connectivities: we say that both
meshes are isomorphic. Given that a point is fully determined by
the barycentric coordinates relative to the tetrahedron in which it
is contained, we can define a one-to-one mapping between C and
the solid assuming that the barycentric coordinates are the same
in both spaces.

In the second stage, the modeling of the solid by trivariate
T-splines is carried out. The control points of the T-splines are cal-
culated enforcing the T-splines to verify the interpolation condi-
tions. Here is where the volumetric parametrization plays its
part, mapping the interpolation points from the parametric do-
main, the T-mesh, onto the solid. In our case, the T-mesh is an
octree partition of C with a similar resolution than the tetrahedral
mesh defined in C.

Our technique is simple and it automatically produces a
T-spline adapted to the geometry with a low computational com-
plexity and low user intervention. As in other methods, our param-
eterization can introduce some distortion, especially along the
cube edges.

The paper is organized as follows: In the next section we de-
scribe the main steps to parameterize a genus-zero solid onto a
cube. Some parts of this section are taken from our previous works
on mesh untangling and smoothing and the meccano method
[7,8,11,24,25], but they have been adapted to the requirements
of the present work. The representation of the solid by means of
trivariate T-splines is developed in Section 3. In Section 4 we show
a test problem and several applications that highlight the ability of
our method for modeling complex objects. Finally, in Section 5 we
present the conclusions and set out some challenges.

2. Volumetric parameterization

2.1. Boundary mapping

The first step to construct a volumetric parameterization con-
sists of establishing a bijective correspondence between the
boundary of the cube and the solid. To do that, the given surface
triangulation of the solid, T S, is divided in six patches or connected
subtriangulations, T i

S ði ¼ 1;2; . . . ;6Þ, having the same connectivi-
ties as the cube faces. Specifically, if we consider that each subtri-
angulation corresponds to a vertex of a graph and two vertices of
the graph are connected if their corresponding subtriangulations
have at least a common edge, then, the graphs corresponding to
the solid and the graph of the cube must be isomorphic (see
[8,25] for details).

Once T S is decomposed into six patches, we map each T i
S to the

corresponding cube face by using the parameterization of surface

triangulations proposed by Floater in [13,14]. This is a well-known
method to transform a surface triangulation onto a plane triangu-
lation defined in a convex domain, that is, the cube faces in our
case. Many and more recent alternative solutions have been pro-
posed to solve the surface parameterization (see for example the
surveys [15,16]), but in most of them the plane triangulation is
not defined in a convex set, which is a restriction for us. Thus, if
si

F is the resulting triangulation on the ith face of the cube, the
parameterization Pi

F : si
F ! T

i
S is a piece-wise linear function that

maps a point p inside triangle T 2 si
F onto a point q belonging to tri-

angle Pi
FðTÞ 2 T

i
S with identical barycentric coordinates.

In order to ensure the compatibility of Pi
F

n o6

i¼1
, the boundary

nodes of si
F

� �6
i¼1 must coincide on common cube edges. The six

transformations Pi
F

n o6

i¼1
define a global parameterization between

sF ¼
S6

i¼1si
F and T S given by

PF : sF ! T S: ð1Þ

The parameterization PF is used in the following step of the
algorithm to map a new triangulation defined over the boundary
of C onto the boundary of the solid.

2.2. Generation of an adapted tetrahedral mesh of the cube

Let consider CK is a tetrahedral mesh of C resulting after applying
several local bisections of the Kossaczky algorithm [18] to an initial
mesh formed by six tetrahedra (see Fig. 1(a)). Three consecutive glo-
bal bisections are presented in Fig. 1(b)–(d). The mesh of Fig. 1(d)
contains eight cubes similar to the one shown in Fig. 1(a). Therefore,
the successive refinement of this mesh produces similar tetrahedra
to those of Fig. 1(a)–(c).

If sK ¼ @CK is the new triangulation defined on the boundary of
C, then we define a new parameterization

PK : sK ! T �S; ð2Þ

where T �S is the surface triangulation obtained after PF-mapping the
nodes of sK. The points of sK are mapped to T �S by preserving their
barycentric coordinates. Note that T �S is an approximation of T S.
In order to improve this approximation we must refine the tetrahe-
dra of CK in contact with the surface of the cube in such a way that
the distance between T �S and T S decreases until reaching a pre-
scribed tolerance e. The concept of distance between two triangula-
tions can be defined and implemented in several ways. In our case,
it is as follows:

Let T be a triangle of sK, where a, b and c are their vertices and
let pk 2 fpig

Nq

i¼1 be a Gauss quadrature point of T, then, the distance,
d(T), between PK(T) and the underlaying triangulation T S is de-
fined as the maximum of the volumes of the tetrahedra formed
by PF(a), PF(b), PF(c) and PF(pk). If we consider the distance be-
tween T �S and T S as the maximum of all d(T), the local refinement
stops when d(T) < � for all T 2 sK. A more accurate approach based
on Hausdorff distance can be found in [4].

Once the adapted tetrahedral mesh CK has been constructed by
using the proposed method, the nodes of sK are mapped to the

Fig. 1. Refinement of a cube by using Kossaczky’s algorithm: (a) cube subdivision into six tetrahedra, (b) bisection of all tetrahedra by inserting a new node in the cube main
diagonal, (c) new nodes in diagonals of cube faces and (d) global refinement with new nodes in cube edges.
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