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a b s t r a c t

In order to model fracture, the cohesive zone method can be coupled in a very efficient way with the
finite element method. Nevertheless, there are some drawbacks with the classical insertion of cohesive
elements. It is well known that, on one the hand, if these elements are present before fracture there is
a modification of the structure stiffness, and that, on the other hand, their insertion during the simulation
requires very complex implementation, especially with parallel codes. These drawbacks can be avoided
by combining the cohesive method with the use of a discontinuous Galerkin formulation. In such a for-
mulation, all the elements are discontinuous and the continuity is weakly ensured in a stable and consis-
tent way by inserting extra terms on the boundary of elements. The recourse to interface elements allows
to substitute them by cohesive elements at the onset of fracture.

The purpose of this paper is to develop this formulation for Kirchhoff–Love plates and shells. It is
achieved by the establishment of a full DG formulation of shell combined with a cohesive model, which
is adapted to the special thickness discretization of the shell formulation. In fact, this cohesive model is
applied on resulting reduced stresses which are the basis of thin structures formulations. Finally, numer-
ical examples demonstrate the efficiency of the method.

� 2011 Elsevier B.V. All rights reserved.

1. Introduction

When designing thin structures, tearing prediction remains a
challenging modeling task. This increases the interest of fracture
and rupture numerical models for thin bodies, which must be able
to take into account a through-the-thickness fracture.

Among the different approaches in fracture mechanics, the
cohesive zone concept pioneered by Dugdale [1] and Barenblatt
[2] is based on a ‘‘Traction Separation Law’’ (TSL), which gives a
relationship between the tension and the opening of the crack
faces (D), and can be easily combined with finite element (FE)
methods [3–10]. In such an approach, cohesive elements, integrat-
ing the TSL, are inserted as interface elements between bulk ele-
ments. Unfortunately, as it is extensively discussed in [11,12],
the two classical methods considered to introduce the cohesive
elements suffer from severe limitations. On the one hand, an
intrinsic cohesive law [4,6,9,13], for which cohesive elements are
introduced at the beginning of the simulation, has to consider
the pre-fracture stage by inserting an initial slope in the TSL (see
Fig. 1). This initial slope must tend to infinity to ensure a correct

wave propagation in the structure, which leads to some numerical
problems [14]. On the other hand, an extrinsic cohesive law, where
the cohesive elements are inserted on the fly during the simulation
when a fracture criterion is reached [3,7,8,10], requires a very com-
plex implementation [15–17] due to the inherent difficulty associ-
ated with propagating topological changes in the mesh. As a large
number of degree of freedoms (dofs) is needed to obtain a conver-
gence in a fracture problem [7], a parallel implementation can be
required to perform large simulations in an admissible computa-
tional time, further complicating the implementation.

Some alternatives have been suggested [18–21] to compensate
these different limitations, and one promising method, especially
when considering 3D parallel simulations, is a new approach based
on the combination of a full discontinuous Galerkin (DG) formula-
tion and an extrinsic cohesive law. This method was pioneered by
Mergheim et al. [22], by Radovitzky et al. [11,12], and by Prechtel
et al. [23]. In this method, interface elements are inserted at the
beginning of the simulation between discontinuous bulk elements
to weakly ensure the compatibility condition in a stable and con-
sistent manner. When a fracture criterion is reached, this interface
element is then very easily replaced by a cohesive element. This
method has recently been implemented for 3D elements by
Radovitzky et al. in [12], where it was shown that this approach
is scalable when parallelized and does not require the use of
complex topological information. Moreover, this method can be
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implemented easily into existing FE codes. For completeness, let us
note that the combination of cohesive law and discontinuous
Galerkin method was also achieved by using a space–time discon-
tinuous method [21].

This method can be seen as complementary to the XFEM meth-
od [24–29], among others. The XFEM formulation, pioneered by
Moës and Belytschko [25] allows to take into account discontinu-
ities inside elements, and is thus very appealing to model crack
propagation. The most common XFEM approaches enrich nodes
with the linear elastic fracture mechanics solution in order to
extract the stress intensity factors, and to propagate a crack using
the maximum hoop criterion. In the method based on the
DG/extrinsic law combination, cracks can be initiated, merged, or
propagate, without implementing explicitly crack propagation
criteria, as the solution results naturally from the minimization
of energy. Moreover as the DG/extrinsic law combination is well
suited for dynamics and large computations in parallel, it makes
a good alternative to XFEM for problems of fragmentation as for
structures subjected to shock, blast, . . . Although the DG/extrinsic
law combination suffers from having cracks forced to follow the
elements edges, and thus requires a fine mesh to capture the
solution, as recently demonstrated by Duflot et al. [29] for 3D prob-
lems, the XFEM method also requires fine mesh around the crack
tip to capture the crack path. On the implementation point of view,
the DG/extrinsic law combination can easily be introduced in an
existing parallel code, while the implementation of XFEM requires
more attention. Indeed implementation of the XFEM method is
challenging when the crack path is near a node, which requires
re-meshing [29], when applying Dirichlet boundary conditions,
. . . Also, parallelizing the XFEM is not straightforward, which
makes the DG/extrinsic law combination a good candidate to solve
large scale problems.

In a recent paper, the authors extended the combination of a full
discontinuous Galerkin (DG) formulation and an extrinsic cohesive
law to Euler Bernoulli beams [30], and the present work wants to
develop this formulation for Kirchhoff–Love shells fracture prob-
lems. Toward this end, a new one-field full discontinuous Galerkin
(full-DG) discretization of the shell equations is obtained from the
extension of the work of several authors [31–36] who have devel-
oped a C0/DG formulation for thin bodies. In these works a DG
method is used to weakly enforce the C1 continuity required by
high-order formulations of beams, plates and shells, which leads
to displacement-field only methods (nodes have no degree of free-
dom of rotation). However to extend such a formulation to frac-
ture, it is convenient to consider discontinuous test functions in
order to insert interface elements. The study of the new resulting
full-DG formulation shows that this formulation is consistent, sta-
ble (if stabilization parameters are larger than a mesh-independent
constant) and that it converges in the L2 norm with the optimum
rate.

In order to enhance this full DG formulation with fracture
mechanics, the interface element should integrate the TSL upon
the onset of fracture. However, as it is discussed in [30], the model
of a ‘‘through-the-thickness fracture’’ is not straightforward for
thin bodies since the thickness is modeled implicitly in the mesh
discretization. To avoid the evaluation of the TSL at different points
on the thickness, authors suggested in [30] to apply the cohesive
principles directly to the resultant stresses (bending and mem-
brane) in terms of the resultant openings (angle and mid-plane
openings). The new Traction Separation Law is then defined in such
a way that the model respects the energetic balance during the
fracture process for any coupled bending-traction loadings. This
model is extended here to linear shell elements by considering a
combination of the different fracture modes.

The article is organized as follows. First, the governing equa-
tions of continuum mechanics of shells are recalled in Section 2.
Afterward, in Section 3, these equations are formulated within a
full-DG framework and the numerical properties are then, on the
one hand, studied in an analytical way, and, on the other hand
illustrated by a numerical example. In Section 4, an original cohe-
sive zone model based on the resultant stresses is presented and is
coupled with the full-DG formulation in order to take into account
brittle fracture. The next section deals with some considerations
about the implementation of the method. Section 6 presents sev-
eral numerical applications of fracture testing to demonstrate the
ability of the presented framework to simulate fracture problems
of thin bodies. Finally some concluding remarks are drawn.

2. Continuum mechanics of thin bodies

The continuum mechanics of thin structures is well established
and can be found in several Refs. [34,35,37,38]. For this reason, this
section presents only the important results and the notations re-
quired to develop the full DG theory. More details can be found
in the cited papers, and in particular the last two references use ex-
actly the same notations and conventions as in this paper.

2.1. Kinematics of the shell

A thin body can be described by considering its mid-surface sec-
tion as a Cosserat plane A and a third coordinate, representing the
thickness, belonging to the interval [hmin;hmax]. In the reference
frame EI, this representation is written n ¼

P3
I¼1n

IEI : A � ½hmin;

hmax� ! R3. Hereinafter, a subscript will be used to refer to values
expressed in the considered basis, while a superscript will be used
to refer to values expressed in the conjugate basis. Of course, for
the initial frame, EI = EI. Roman letters as a subscript or superscript
substitute for integers between one and three, while Greek letters
substitute for integers one or two. The representation of the body
in the inertial frame is illustrated in Fig. 2. Using uðn1; n2Þ :

A ! R3 the mapping of the mid-surface and t : A ! S2 ¼ ft 2
R3jktk¼1g the director of the mid-surface, with S2 the unit sphere
manifold, a configuration S of the shell is represented by the man-
ifold of position x, which is obtained by the mapping
U : A � ½hmin; hmax� ! S,

x ¼ UðnIÞ ¼ uðnaÞ þ n3tðnaÞ: ð1Þ

By convention, S refers to the current configuration of the shell,
while the reference configuration S0 is obtained by the mapping U0.

2.2. Governing equations of the linear shell

The governing equations of a thin body are obtained by inte-
grating on the thickness the equations of force and moment equi-
librium, leading to

Fig. 1. Linearly decreasing monotonic (a) extrinsic and (b) intrinsic ‘‘Traction
Separation Law’’.
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