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a b s t r a c t

While many successful absorbing boundary conditions (ABCs) are developed to simulate wave propaga-
tion into unbounded domains, most of them ignore the effect of interior discretization and result in spu-
rious reflections at the artificial boundary. We tackle this problem by developing ABCs directly for the
discretized wave equation. Specifically, we show that the discrete system (mesh) can be stretched in a
non-trivial way to preserve the discrete impedance at the interface. Similar to the perfectly matched lay-
ers (PML) for continuous wave equation, the stretch is designed to introduce dissipation in the exterior,
resulting in a PML-type ABC for discrete media. The paper includes detailed formulation of the new dis-
crete ABC, along with the illustration of its effectiveness over continuous ABCs with the help of error anal-
ysis and numerical experiments. For time-harmonic problems, the improvement over continuous ABCs is
achieved without any computational overhead, leading to the conclusion that the discrete ABCs should be
used in lieu of continuous ABCs.

� 2011 Elsevier B.V. All rights reserved.

1. Introduction

Many problems of wave propagation involve computing the
solution in a finite region of an unbounded domain in an efficient
way. The finite region of interest is usually called the interior and
the rest of the unbounded domain is called the exterior. The prob-
lem is then finding an efficient way to model the effect of the exte-
rior on the interior. In the absence of any sources in the exterior,
the exterior absorbs energy entering the medium and does not
emit any energy into the interior. Artificial boundary conditions
developed to mimic this behavior are called absorbing boundary
conditions (ABCs). Several successful boundary conditions have
been proposed for this purpose. However, most of the ABCs are de-
signed for the underlying continuous wave equation and do not
consider the discretization of the interior, resulting in some spuri-
ous reflections. This paper presents a systematic derivation of ABCs
that accurately considers the discretization of the interior, thus
mitigating these reflections (we refer to these boundary conditions
as discrete ABCs, while the boundary conditions derived for contin-
uous equations are called continuous ABCs).

While discrete ABCs are more commonly considered for the
Schrödinger equation (see, e.g. [1]), most of the work on ABCs for
wave propagation has been in developing continuous ABCs (see,
e.g. [2,3]). In what follows, we give a brief and non-exhaustive

summary of existing methods, focusing on polygonal interiors
(straight computational boundaries with corners).

1.1. The exact boundary condition

For the problem without any sources in the exterior, the exact
boundary condition at the truncation boundary is written as a rela-
tion between the Dirichlet data and the Neumann data. The oper-
ator relating the Dirichlet data to the Neumann data is referred to
as the DtN map or the half-space stiffness in the context of straight
boundaries. Another commonly used term is the characteristic
impedance which relates the velocity to the traction at the bound-
ary. While the stiffness and impedance are different, there is a one-
to-one mapping between the two and thus both terms are often
used interchangeably. The DtN map in the continuous case can
be derived using Fourier transform, while the discrete case re-
quires the Z-transform. In both cases, however, the exact DtN
map is non-local in space and time, and is prohibitively expensive.
ABCs are essentially various tractable approximations of the exact
boundary condition and can be classified based on the nature of
the approximation. The major classifications are as follows.

1.2. Global or nonlocal ABCs

These methods rely on reducing the computational cost by
truncating the extent of non-local coupling in space and convolu-
tion in time. However, accurate simulation requires rather long-
range coupling in space and/or time and the computation is expen-
sive even after such truncation. A review of the various methods
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can be found in [2] for continuous case, and [1] for the discrete case
in the context of the Schrödinger equation. Furthermore, global
ABCs usually require the knowledge of the analytic form of the
DtN map. Although in some cases the DtN map can be numerically
approximated (see, e.g. [4] for continuous waves and [5–7] for dis-
crete waves) it is in general expensive and cannot easily handle
geometric complexities such as corners.

1.3. Rational ABCs

Originally introduced independently by Lindman [8] and Eng-
quist and Majda [9], this class of continuous ABCs approximate
the exact DtN map, which is a pseudo-differential operator, using
rational functions to derive local ABCs in a differential form. Also
worth noting are the ABCs developed by Higdon [10]; albeit com-
ing from a different viewpoint of multi-directional absorption of
waves, Higdon showed that his ABCs are generalizations of the
ABCs of Lindman and Engquist–Majda. While the theoretical devel-
opment has been done decades back, the implementation of high-
order versions of these boundary conditions were only developed
relatively recently (see, e.g. [11]). With respect to discrete systems,
rational absorbing boundary conditions and related ideas have
been explored in [12,13], and more recently in [14]. The develop-
ment of these discrete ABCs are relatively less mature compared
to continuous ABCs and treatment of corner regions is an impor-
tant open question.

1.4. Perfectly matched layers (PML)

The PML, also a continuous ABC, involves replacing the exterior
with an attenuating medium (PML region) that perfectly matches
in impedance with the interior [15], and truncated at some dis-
tance. Due to the perfect matching of impedance, there are no
reflections at the interface, and due to attenuation in the PML re-
gion, the reflection due to truncation is minimal. PML is a widely
used continuous ABC due to its flexibility and generality. However,
it has been recently shown that PML may not be as efficient as ra-
tional ABCs [16,17]. While extension of PML to discrete systems ex-
ist [18], these do not preserve the perfect matching property of
PML. In Remark 4 (Section 3), we explain briefly the loss of perfect
matching when coordinate stretching is applied in a direct manner.

1.5. Perfectly matched discrete layers (PMDL)

Our research on ABCs has resulted in a class of continuous ABCs
called perfectly matched discrete layers (PMDL) that link PML to
rational ABCs. Essentially, PMDL is a specially discretized PML that
is equivalent to rational ABCs. Specifically, PMDL is a PML discret-
ized using linear finite elements with midpoint integration [19]. It
has been shown that, with respect to approximating the DtN map,
the error due to midpoint integration exactly cancels the discreti-
zation error, thus resulting in perfect matching even after the dis-
cretization of the exterior (hence the name, perfectly matched
discrete layers – PMDL). The only error in the DtN map is due to
the truncation of PMDL, which converges to zero exponentially
as the number of layers increases. PMDL is shown to be algebrai-
cally equivalent to rational ABCs and can be considered an efficient
way to implement rational ABCs (in fact, initial development of
PMDL started as an efficient implementation of rational ABCs
[20]). Given its close links to PML and rational ABCs, PMDL can
be considered as a unification of PML and rational ABCs, thus inher-
iting their respective advantages of flexibility and efficiency. Not-
withstanding these attractive features, most of the PMDL
development has been largely limited to continuous wave
equations.

Motivated by molecular dynamics applications, we recently
proposed an extension of PMDL [21] for the semi-discrete (discrete

in space) wave equation in time domain. In this paper, we apply
the discrete PMDL for the discretized Helmholtz equation and
claim that discrete PMDL is a better choice than continuous ABCs.
Note that discrete PMDL contains two discrete’s in its name (when
expanded). The first discrete refers to the fact that the PMDL is de-
signed for discrete interiors and thus considers the discretization
error in the interior. The second discrete refers to the exterior dis-
cretization that preserves the perfect matching (thus called per-
fectly matched discrete layers – PMDL).

The proposed discrete PMDL is based on the observation that,
just like in the case of continuous PML, there exist a class of exte-
riors, both continuous and discrete, which have the same DtN map
as uniformly discretized half-space but different propagation char-
acteristics. These equivalent exteriors include semi-infinite meshes
of non-uniform and arbitrary lengths. Similar to the original devel-
opment of PMDL, the flexibility in choosing arbitrary lengths al-
lows the use of complex coordinate stretching ideas of PML to
damp out propagating waves and large real elements to damp
out evanescent waves [22,19]. Since the waves are damped out
in the exterior, the exterior can be truncated depending on the re-
quired accuracy in the interior. Given that the proposed discrete
PMDL is perfectly matched with discretized interiors, as expected,
it is shown to be more accurate than the continuous PMDL. Fur-
thermore, the computational costs of continuous and discrete
PMDL are comparable, leading us to advocate the use of discrete
PMDL as the ABC for numerical simulations in frequency domain.

The rest of the paper contains more precise formulation of the
proposed discrete PMDL. Section 2 lays down the details of contin-
uous and discrete wave equations, both with respect to solution
behavior and ABCs. Section 3 outlines the basic intuition that trig-
gered the current development and an argument that continuous
ABCs can be modified to work for discrete systems. Given that
the this paper extends PMDL to discrete wave equations, the con-
tinuous PMDL is briefly reviewed in Section 4. A detailed procedure
to extend PMDL to discrete systems in 1-D is presentation in Sec-
tion 5. Section 6 contains the extension of the 1-D formulation
for 2-D rectangular mesh, along with some comments related to
extension to non-rectangular and higher order meshes. The paper
is concluded with closing remarks in Section 7.

2. Preliminaries

2.1. Model problem

Consider the propagation of a wave in full-space, x 2 ð�1;1Þ
(Fig. 1a), and assume that we are interested in the solution in the
left half-space, x 2 ð�1;0Þ, when there are no sources in the right
half-space. The usual procedure to solve such a problem is to break
the full-space into left and right half-spaces and replace the right
half-space by applying an absorbing boundary condition (ABC) at
the interface x ¼ 0 (Fig. 1b). The problem can now be solved using
a numerical method like the finite element method (FEM), which
involves discretizing the left half-space. However, once the left
half-space is discretized, we now have two different systems at
the interface (Fig. 1c): a discrete half-space on the left and a contin-
uous half-space on the right (mimicked by the ABC). Since a change
in medium leads to reflections at the interface, this treatment of
the right half-space is not ideal. The ideal way to handle the prob-
lem is to consider the propagation in a discrete full-space (Fig. 1d)
and then replace the right half-space with a Discrete ABC that cap-
tures the discreteness of the medium (Fig. 1e). Thus, we seek a way
to develop ABCs for a discrete half-space.

Before discussing the proposed method, we first present the
governing equations and some basic definitions that will be used
in the rest of the paper. For simplicity, we consider the 1-D case
first and extend the ideas to higher dimensions in Section 6.
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