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ABSTRACT

Compared with the probability approach, the non-probabilistic convex model only requires a small
amount of samples to obtain the variation bounds of the imprecise parameters, and whereby makes
the reliability analysis very convenient and economical. In this paper, we attempt to propose and create
a correlation analysis technique mathematically for the non-probabilistic convex model, and based on it
develop an effective method to construct the multidimensional ellipsoids on the uncertainty. A marginal
convex model is defined to describe the variation range of each uncertain parameter, and a covariance is
defined to represent the correlation degree of two uncertain parameters. For a multidimensional prob-
lem, the covariance matrix and correlation matrix can be created through all marginal convex models
and covariances, based on which the required ellipsoid on the uncertainty can be conveniently achieved.
By combining the correlation analysis technique and the reliability index approach, a non-probabilistic
reliability analysis method is also developed for uncertain structures. Six numerical examples are pre-

sented to demonstrate the effectiveness of the present method.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Uncertainty widely exists in practical engineering problems,
which are commonly related to material properties, loads, bound-
ary conditions, etc. The probability model is most widely used to
quantify the uncertainty, and whereby obtain the distributions of
the structural responses based on the statistical techniques [e.g.
1-5]. The probability model has become a principal means to deal
with the uncertainty and been successfully applied to varieties of
industrial departments. In its treatments, a great amount of infor-
mation is required to construct precise probability distributions for
uncertain parameters, which, however, are not always available or
sometimes very costly for practical problems. Thus some assump-
tions have to be made for probability distributions in many cases
when using the probability model. Nevertheless, there are re-
searches indicating that even a small deviation of the probability
distributions from the real values may result an extremely large er-
ror of the uncertainty analysis [6].

Since entering the 1990s, Ben-Haim and Elishakoff [6-9] pro-
posed a new kind of uncertainty analysis methodology based on
the non-probabilistic convex model. In this method, the parame-
ters’ fluctuation is assumed to fall into a multidimensional ellip-
soid or solid box which can be easily obtained only based on a
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small number of samples or just our engineering experience, and
optimization problems are generally formulated to seek the most
favorable and least favorable structural responses under the con-
straints defined by the convex sets. Due to its weak dependence
on the sample amount, the convex model approach has been
attracting growing attention, and some relevant analysis tech-
niques have been developed. A comparison was made for the prob-
ability model and the convex model [9]. An “uncertain triangle”
was employed to describe the relation between the three uncer-
tainty analysis methods, namely probability, fuzzy sets and convex
model [10]. A matrix perturbation method was developed to study
the static responses and eigenvalues of structures based on the
convex model [11]. A new interval analysis technique was pro-
posed to calculate the static and dynamic responses of uncertain
structures based on an improved first-order Taylor interval expan-
sion [12]. An error estimation was suggested for interval and sub-
interval analysis methods based on a second-order truncation
model [13]. Applications of the convex model in engineering
mechanics include non-linear buckling analysis of a column with
uncertain initial imperfections [14], stability analysis of elastic bars
on uncertain foundations [15], bound analysis of structural re-
sponses of beams [16], uncertain analysis in structural number
determination in flexible pavement design [17], etc.

In recent years, convex model was also applied to the reliability
analysis of uncertain structures and some works in this field have
been published. By introducing the concept of traditional first or-
der reliability method (FORM) into the problems with convex
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models, a non-probabilistic reliability index which represents a
minimal distance in the standard convex space was defined
[18,19] and an efficient solving algorithm was further formulated
for this reliability index [20]. By putting the non-probabilistic reli-
ability indexes as constraints, several reliability-based optimiza-
tion design methods were developed [21-23]. Based on the order
relation of convex sets, a nonlinear interval number programming
with high efficiency was suggested for reliability design of uncer-
tain structures [24,25]. By integrating the probability approach
and the convex model, the hybrid reliability was also investigated
[26,27].

In the above mentioned works, the uncertainty is generally
quantified through a multidimensional ellipsoid, which represents
the scattering extent of the uncertain parameters. In practice, for
convex model and all relevant analysis techniques, this ellipsoid
plays an extremely important role, just like the precise distribu-
tions of the parameters in probability analysis. Unfortunately, an
effective method which can be used to construct the multidimen-
sional ellipsoids efficiently and conveniently is still in absence. In
almost all existing works, the ellipsoids on the uncertainty are just
assumed to be given in advance, however, it should be pointed out
that in practical applications no one seems to do it for us. Theoret-
ically, the ellipsoid can be obtained by constructing a multidimen-
sional ellipsoid containing all the scattered samples of the
parameters while with a minimal volume (termed as “minimum
volume method”), which, however, will bring about some severe
difficulties. Firstly, optimization problems need to be formulated
to determine the smallest ellipsoid, which can be effectively solved
only for problems with very small numbers of parameters. With
increasing of the parameters, the complexity of these optimization
problems will grow remarkably as much more design variables and
constraints will be involved. Especially for high-dimensional prob-
lems, it seems impossible to obtain a useful ellipsoid through the
minimum volume method. Secondly, even though a precise ellip-
soid can be created through this method, we can only have a rough
knowledge on the whole uncertainty. Some important information
such as dependence between the parameters and effects of the
dependence on the systematic responses are still unavailable,
which, however, is very important for our uncertainty analysis of
complex engineering problems. Actually, the above problems have
been the main obstacles influencing the practicability of the con-
vex model approach.

This paper aims to create a mathematical foundation for corre-
lation analysis of the non-probabilistic convex model, and whereby
propose an approximate method to efficiently construct the multi-
dimensional ellipsoids on the uncertainty. Through the present
work, we expect to promote the engineering practicability of the
convex model approach a certain extent. Four main parts are in-
cluded in the following text. Firstly, a correlation analysis tech-
nique is proposed for convex model, based on which the
multidimensional ellipsoids on the uncertainty can be created very
easily and conveniently for problems with any dimensions. Sec-
ondly, by combining the correlation analysis technique with the
non-probabilistic reliability index approach, a reliability analysis
method is developed for uncertain structures. Thirdly, six numeri-
cal examples are provided to demonstrate the effectiveness of the
present method. Finally, a conclusion is given.

2. Multidimensional ellipsoidal convex model

Assume that there exist n uncertain parameters X;i=1,2,...,n
describing either in the structural properties or in the excitations.
These parameters constitute an n-dimensional parameter space,
namely X" = {X;,Xa,...,X,}. Also assume that we have limited infor-
mation on the uncertainty, represented by m experimental sam-

ples X, r=1, 2, ..., m in this n-dimensional space. Then an
ellipsoid containing all the samples can be created to quantify
the uncertainty [28]
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where X° denotes the central point of the ellipsoid, and G is the
characteristic matrix of the ellipsoid
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The characteristic matrix G determines the size and orientation of
the ellipsoid, and it is symmetric positive-definite. Only when the
axes of the ellipsoid are directed along the axes of the coordinates,
G becomes a diagonal matrix. By using the convex model, all possi-
ble combinations of the uncertain parameters are assumed to fall
into the above ellipsoid.

Actually, there exist an infinite number of ellipsoids containing
the m samples, among which the one with a minimum volume is
considered as the best one. Theoretically, such an ellipsoid can
be obtained by solving a following optimization problem
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where 1;,i=1, 2, ..., n denote the half lengths of all the axes of the
multidimensional ellipsoid, and they can be obtained through an
eigenvalue decomposition to the characteristic matrix G. The opti-
mization variables of the above problem are elements g i=1, 2,
..., n,j = iof the characteristic matrix G and the central point coor-
dinates X?, i=1,2,...,n. The size of the ellipsoidal volume can be
well quantified by the product of all the r;, i=1, 2, ..., n.

In theory the above minimum volume method may be an ideal
way to create the ellipsoid on the uncertain parameters. Never-
theless, it should be pointed out that actually the above method
is applicable only to a very small number of problems because
of the following reasons. Firstly, an optimization problem in Eq.
(3) needs to be solved when seeking the smallest ellipsoid, which
will become extremely complex when the parameter dimension
and the sample size become a little large, as in general dozens
or even hundreds of constraints and optimization variables will
be easily involved. Furthermore, in the optimization process all
eigenvalues of the characteristic matrix G should be guaranteed
to be positive in each iterate, otherwise, the obtained matrix
may not correspond to an ellipsoid. Therefore, it seems not an
easy job for the current optimization algorithms to always ensure
a robust convergence for such a complex problem. Secondly, more
importantly, the optimization problem in Eq. (3) in general has
multiple optima, in which the global optimum is actually what
we want, as only the global optimum can ensure a minimum vol-
ume of the ellipsoid. A local optimum for Eq. (13) may correspond
to an ellipsoid which has a much larger volume than the real one,
and generally we will obtain an ultra-conservative analysis or de-
sign based on such an overlarge ellipsoid. Nevertheless, for cur-
rent optimization techniques the global optimality is still a
theoretical and numerical difficulty. On the one hand, it is well
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