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In this paper, we present a novel approach that allows to couple a deterministic continuum model with a
stochastic continuum one. The coupling strategy is performed in the Arlequin framework, which is based
on a volume coupling and a partition of the energy. A suitable functional space is chosen for the weak
enforcement of the continuity between the two models. The choice of this space ensures that the mean
of the stochastic solution equals the deterministic solution point-wise, and enforces appropriate bound-
ary conditions on the stochastic dimension. The proof of the existence of the solution of the mixed prob-
lem is provided. The numerical strategy is also reviewed, in particular with a view at the Monte Carlo
method. Finally, examples show the interest of the method, and possible strategies for use in adaptive
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1. Introduction

Classical deterministic models provide global predictions that
are satisfactory for many industrial applications. However, when
one is interested in a very localized behavior or quantity, or when
multiscale phenomena come into play, these models may not be
sufficient. For instance, the limited heterogeneity of a material
modeled as a continuum might have no influence on its behavior
on a large scale, while the study of a local stress intensity factor
would strongly depend on the local heterogeneity of the mechan-
ical parameters. Unfortunately, for these problems, the information
necessary to parameterize the relevant, very complex, models is
usually not available. Stochastic methods have therefore been pro-
posed and now appear unavoidable in multiscale modeling.

Although the use of stochastic models and methods has
expanded rapidly in the last decades, the related numerical costs
are still often prohibitive. Hence, the application of these methods
in a complex or industrial context remains limited. An important
field of research is therefore concerned with the reduction of the
costs associated with the use of stochastic methods, for example
by using iterative methods specially adapted to the structure of
the matrices arising in the Stochastic Finite Element (FE) method
[1,2], using reduced bases for the representation of random fields
[3], or using special domain decomposition techniques for parallel
resolution on clusters of computers [4].

The present paper proposes an alternative to these purely math-
ematical/numerical approaches through the coupling of two mod-
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els: one deterministic and one stochastic. The general goal is that
of modeling a global problem in a mean or homogeneous way
where it yields sufficient accuracy, while retaining a stochastic
model where needed. Hence, additional complexity is added in
the model only where required, and the general approach is both
more elegant and numerically cheaper than a global all-over sto-
chastic model would be. Further, the cuts on computational costs
mean that industrial applications come within reach.

The core idea for this paper, which is the choice of the operator
and functional space for the coupling (Section 3.2) was proposed
originally in [5]. It is here further described, in particular by adding
the proof of existence and uniqueness of a solution for the mixed
problem (Theorem 3.1), and showing how a Monte Carlo approach
can be considered for the resolution of that problem (Section
3.4.2).

This work is closely related to two previous works in the liter-
ature [6,7]. However, in [6], the theoretical basis, which is different
from the Arlequin formulation, is less general. In particular, it is
only aimed at coupling a deterministic Boundary Element method
with a Stochastic FE method. In the recent work [7], the authors
aim at coupling two stochastic models, one continuous, and one
atomistic. However, many theoretical questions are left out. In par-
ticular, the coupling is performed between realizations of the sto-
chastic operators, while we try to describe here the coupling at the
level of the stochastic operators.

In the first part of this paper, we will present each of the two
models that will be used: a deterministic continuum model with
constant parameters (the “classical” one), and its stochastic coun-
terpart, where the parameter varies randomly in space and is mod-
eled as a random field. This first section will be concluded by a
brief review of the uses and limitations of each of these models,
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taken separately, and the interest of using coupling approaches.
The second part will describe the main novelty of the paper, that
is the description of a general coupling approach for the two
models described above, in the Arlequin framework [8,9]. Finally,
applications in 1D and 2D will show the efficiency and interest of
the method. In particular, a first hint at the use of this approach
in the context of adaptivity will be described.

2. Description of the two mono-models

In this section, we describe the two models that will be consid-
ered in this paper: a continuum scalar mechanics model, with
deterministic coefficients, and the same type of model with sto-
chastic coefficients. Some indications will also be given concerning
the uses and limitations of each of these two models in physical
applications. The two models that are described in this section will
be referred to as mono-models, in opposition to the coupled model
that will be considered in the next section. In the section of appli-
cations, we will compare extensively the solutions obtained using
the coupled model with those obtained with each of the two
mono-models.

2.1. The deterministic continuum mono-model

Let us consider a domain Q of R, with outgoing normal vector n
and smooth boundary 0, separated into Dirichlet and Neumann
boundaries I'p and I'y, such that I'pu I'y=0Q, I'pn I'y=0, and
I'p # 0 (Fig. 1, left). We consider Poisson’s equation, with a deter-
ministic scalar parameter K > 0, considered here constant, a bulk
loading field f{x), defined on €, and a surface loading field g,(x), de-
fined on I'y. Supposing for notational simplicity that the Dirichlet
boundary condition is homogeneous, the weak formulation for this
problem reads: find u € V such that

a(u,v) =L(v), Yvey, (1)

where a: VxV — R and ¢:V — R are defined, respectively, by
a(u,v) = [(KVu-Vudx, and ((v) = [,fvdx+ [, g,vdx, and

V= {ven @) v, =0). @)

Endowed with the inner product (u, »),, = [, Vu - Vodx, and associ-
ated norm Hqu, =/ |Vul*dx, V is a Hilbert space. The problem (1)
can be shown to have a unique solution u, for instance using Lax-
Milgram theorem [10, Chapter 2]. This unique solution can be
approximated, for example, by the Finite Element method.

2.2. The stochastic continuum mono-model

Let us now consider the same domain €2, but this time with a
random fluctuating mechanical parameter. Let us model this
parameter by a random field K € £*(©,L*(Q)), where (@, F,P) is
a complete probability space, with @ a set of outcomes, F a g-alge-

Fig. 1. Description of the two mono-models: deterministic mono-model with
constant coefficient K (left) and stochastic mono-model with heterogeneous

coefficient K(x) (right).

bra of events of @, and P: F — [0,1] a probability measure. We
additionally assume (as in [11] for example) that this field is

bounded and uniformly coercive, that is to say 3IKmin,
Kimax € (0,+00), such that
0 < Kmin < K(X) < Kmax < 00, Vx € Q, almost surely. 3)

The weak formulation of the corresponding stochastic boundary
value problem reads: find u € W such that

A, v) = L(v), Yvew, 4)

where 4: W x W — R and £ : W — R are defined, respectively, by
A(u,v) =E[[,KVu-Vwdx], and L(v) = [, fE[v]dx+ [, g.E[v]dx,
E[] = [, -dP denotes the mathematical expectation,

W =£2(60,V) 5)

and V is defined in Eq. (2). Endowed with the inner product
(u,v),, =E[(u,v),] =E[[,Vu-Vvdx], and associated norm
[u))?, = E“\u”f,] = E[fQ |Vu|2dx],w is a Hilbert space.

As in the previous case, using Lax-Milgram theorem, it can be
proved that this problem has a unique solution u (see for instance
[11]). An approximation of that solution can then be obtained, for
example, by using a Stochastic FE method [12,13] or a Monte Carlo
approach [14].

Remark 2.1. We assume here that the loads f and g are determin-
istic but this should not be seen as a restriction of the method. In
particular, the mixed formulation of the next section and its
numerical approximation can be developed with both the param-
eter K(x) and the loads modeled as random fields.

Remark 2.2. The existence and uniqueness of the solution of the
above stochastic boundary value problem can also be proved with
less constraining boundary conditions. In particular, the case when

- 2 1 . _ . _
W= {E (0, H (Q2)); Elv] =0, Vx € I'p; /FD vdx =0, a.s.}, (6)

still works. The homogeneous boundary condition is therefore not
imposed anymore almost surely and almost everywhere. Rather,
the space average of the displacement over the Dirichlet boundary
cancels almost surely. This type of boundary condition is similar
to what is done within the Arlequin framework in Section 3.2.

2.3. Use of the mono-models and interest of coupling approaches

The mono-model described in Section 2.1 is interesting when
the material is considered on a scale at which homogenization
can take place. This statement is intrinsically linked to the quan-
tities of interest that we aim to evaluate. In particular, the estima-
tion of the average displacement over a given area might be well
evaluated using such a homogenized mono-model. On the other
hand, considering local quantities with this mono-model is not
adequate. For example, following the path of the tip of a fracture
can probably not be performed using this model. As a general
pattern, the deterministic mono-model of Section 2.1 will be
appropriate for the evaluation of average quantities in macro-
scale problems. In that setting, the FE method can be very effi-
ciently implemented and yields accurate results for a relatively
low cost.

The stochastic mono-model tries to take into account, to some
extent, the inherent heterogeneity of the material, without falling
into the pits of

o really modeling the material at a smaller scale, by considering a
fully different physical setting, e.g. polycrystalline mechanics;
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