Accepted Manuscript

Charge storage, electrocatalytic and sensing activities of nest-like nanostructured $\mathrm{Co}_3\mathrm{O}_4$

G. Rajeshkhanna, Ediga Umeshbabu, G. Ranga Rao

PII:	S0021-9797(16)30763-9
DOI:	http://dx.doi.org/10.1016/j.jcis.2016.10.011
Reference:	YJCIS 21644
To appear in:	Journal of Colloid and Interface Science
Received Date:	24 August 2016
Revised Date:	3 October 2016
Accepted Date:	4 October 2016

Please cite this article as: G. Rajeshkhanna, E. Umeshbabu, G. Ranga Rao, Charge storage, electrocatalytic and sensing activities of nest-like nanostructured Co_3O_4 , *Journal of Colloid and Interface Science* (2016), doi: http://dx.doi.org/10.1016/j.jcis.2016.10.011

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Charge storage, electrocatalytic and sensing activities of nest-like

nanostructured Co₃O₄

G. Rajeshkhanna, Ediga Umeshbabu and G. Ranga Rao*

Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India

Abstract

We synthesized nanostructured Co_3O_4 samples using anionic (SDS), cationic (CTAB) and nonionic (TritonX-100) surfactant molecules in hydrothermal conditions and subsequent calcination. This approach facilitates the synthesis of porous Co_3O_4 material with bundlelike-sheet, nest-like and flake-like morphologies with specific surface areas in the range of 50 to 77 m² g⁻¹. Among these materials, the nest-like nanostructured Co_3O_4 material has unique pore architecture, larger pore volume, low solution and charge transfer resistance, and found to be an active material for charge storage, electrocatalytic and sensing applications. The specific capacitance value of the nest-like Co_3O_4 is 404 F g⁻¹ at a current density of 2 A g⁻¹ with 80% specific capacitance retention. The electrocatalytic oxidation of methanol occurs at lower onset potential on this material with good electrochemical stability. It has good sensing ability for glucose with high sensitivity of 929 μ A cm⁻² mM⁻¹, fast response time of ~0.5 s and detection limit as low as ~1 μ M. These results show that the nest-like nanostructured Co_3O_4 material is a versatile candidate for various applications.

Keywords: Co₃O₄; Supercapacitor; Electrooxidation; Glucose sensor

^{*}Corresponding author; Tel.: +91 44 2257 4226; Fax: +91 44 2257 4202;

E-mail address: grrao@iitm.ac.in (G. Ranga Rao).

Download English Version:

https://daneshyari.com/en/article/4985425

Download Persian Version:

https://daneshyari.com/article/4985425

Daneshyari.com