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a b s t r a c t

A coupled viscoelastic–viscoplastic (VE–VP) model is implemented and studied. The total strain is the
sum of VE and VP parts, and the Cauchy stress is given by a linear VE model as a Boltzmann integral
of the history of VE strains. The proposed computational algorithm features fully implicit integration,
return mapping based on a two-step VE predictor/VP corrector strategy, and a consistent tangent oper-
ator. The algorithm is applied to J2 VP coupled with VE. Very compact expressions are obtained which are
form-identical to classical elasto-viscoplasticity (EVP) provided that the constant linear elastic shear and
bulk moduli are replaced with incremental relaxation moduli which are appropriate functions of the time
increment. Two different integration methods to obtain the incremental moduli are proposed and
assessed. Closed-form solutions for uniaxial tension and simple shear are developed, based on an original
solution method for integro-differential equations. The analytical results enable to illustrate the consti-
tutive model and provide unambiguous benchmarks for numerical algorithms. Model predictions are
compared with experimental data and reasonable correlation is obtained.

� 2011 Elsevier B.V. All rights reserved.

1. Introduction

Polymer materials exhibit rate and time-dependent responses
which are usually described by viscoelastic (VE) or elasto-visco-
plastic (EVP) constitutive models. The difference between the
two classes of models can be illustrated by a uniaxial tension test
which comprises a monotonic loading phase followed by unload-
ing to zero stress. In a VE model, the response is rate-dependent
in both phases, which implies that the stress–strain slope (Young’s
modulus) is not constant, but increases with the strain rate. Also,
even in linear VE, the relation between stress and strain may be
non-linear. Finally, upon unloading to zero stress, the material
can retrieve its initial state of zero strain, not immediately, but
after a long time. Complete description of VE behavior is available
in [9,18,40,47].

During the same uniaxial load/unload test, an EVP material will
behave differently. If the stress is below an initial yield stress (ry),
then the response is rate-independent linear elastic (thus Young’s
modulus is constant). Beyond ry the stress–strain response is both
nonlinear and rate-dependent, with the stress increasing with the
strain rate. Unloading is linear elastic, and therefore rate-indepen-
dent. After unloading to zero stress, there remains an irreversible

strain which does not disappear even after a long time. For a
description of EVP models, see [35,30] and the review in [7].

Note that VE and EVP models are written a priori in very differ-
ent manners, however a link between the two classes of models
does exist. Indeed, it is shown in [6] that an EVP model possessing
several back stresses may behave like a VE model written in spec-
tral form (i.e., decomposing the VE strain into an elastic one and a
spectrum of viscous strains each having its own relaxation time).

The behavior of numerous polymer materials such as thermo-
plastics in general is time and rate-dependent at all stages of defor-
mation. This means that the stress–strain response will depend on
the strain rate both below and above ry. Upon unloading, the slope
is rate-dependent and may be non-linear, even strongly so. Unload-
ing to zero stress leads to a permanent strain which might diminish
with time but does not disappear completely even after a long wait-
ing time. All those features can be described by coupled viscoelastic–
viscoplastic (VE–VP) constitutive models. Most models suppose a
decomposition of the total strain into a sum of VE and VP parts,
and relate the Cauchy stress to the history of VE strains via a VE mod-
el, which can be linear, nonlinear, isothermal or thermally coupled.

A first approach is to write the VE response in hereditary
integral form, which is Boltzmann’s form if the VE model is linear,
and usually of Schapery-type for nonlinear VE models. Linear and
isothermal VE is considered in [31,39,38]. The VE response is non-
linear and coupled with thermal strains in [8,17,26].

A second class of models write the VE part of the response not in
an integral form, but in a differential (or rate) one. Such VE–VP

0045-7825/$ - see front matter � 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.cma.2011.08.015

⇑ Corresponding author. Tel.: +32 10 478042/472350; fax: +32 10 472180.
E-mail addresses: miled_bilel@yahoo.fr (B. Miled), issam.doghri@uclouvain.be

(I. Doghri), laurent.delannay@uclouvain.be (L. Delannay).

Comput. Methods Appl. Mech. Engrg. 200 (2011) 3381–3394

Contents lists available at SciVerse ScienceDirect

Comput. Methods Appl. Mech. Engrg.

journal homepage: www.elsevier .com/locate /cma

http://dx.doi.org/10.1016/j.cma.2011.08.015
mailto:miled_bilel@yahoo.fr
mailto:issam.doghri@uclouvain.be
mailto:laurent.delannay@uclouvain.be
http://dx.doi.org/10.1016/j.cma.2011.08.015
http://www.sciencedirect.com/science/journal/00457825
http://www.elsevier.com/locate/cma


models can be found in [20,10]. In the latter reference, the VE part
is actually a modified elasticity model. Indeed, the classical linear
elastic expression linking the elastic strain rate to the stress rate
is modified by introducing a stress-dependent coefficient which
introduces nonlinearity.

In the present work, a coupled VE–VP model is implemented
and studied. The total strain is supposed to be the sum of VE and
VP parts, and the Cauchy stress is related to the history of VE
strains via a linear VE model written as a Boltzmann integral.
The proposed computational algorithm features fully implicit inte-
gration, return mapping based on a two-step VE predictor/VP cor-
rector strategy, and a consistent tangent operator. Analytical
solutions are developed in uniaxial tension or simple shear. With
respect to the existing literature on coupled VE–VP models, the
main contributions of the present article are summarized hereafter
and will be detailed in the remainder of the text.

Compared to the numerical algorithms proposed by Saleeb et al.
[39], Kim and Muliana [26], Ryou and Chung [38], our results are
much more compact and shown to be form-identical to classical
EVP provided that the constant linear elastic shear and bulk moduli
G and K are replaced with incremental relaxation moduli. The latter
are appropriate functions eGðDtÞ and eK ðDtÞ of the time increment
Dt. Two different integration methods to obtain the incremental
moduli are proposed and compared against each other, theoreti-
cally and numerically, both for finite and small time increments.

Another important contribution is the development of closed-
form solutions for uniaxial tension and simple shear. The mathe-
matical developments are rather elaborate, as one arrives to inte-
gro-differential equations which are difficult to solve and for
which we propose an original solution method. The analytical re-
sults enable us to illustrate the constitutive model and provide
unambiguous benchmarks for numerical algorithms.

This paper is restricted to the regime of small perturbations
(small strains, displacements and rotations). The VE part of the
model is linear and isothermal. Thermal strain coupling and/or
Schapery-type nonlinear VE [41–44] can be developed and imple-
mented, as has already been proposed in some of the previously
cited references. An extension to the large deformation regime
can be developed based on the constitutive models of [3,4,27],
for instance, and the numerical algorithms of [34,24].

The paper has the following outline. The VE–VP constitutive
equations are summarized in Section 2. The computational algo-
rithm is detailed and studied in Section 3. Analytical solutions for
uniaxial tension and simple shear are developed in Section 4. The
model and its predictions are verified and validated in Section 5.
Numerical predictions are assessed against analytical results in
Section 5.1. Model predictions are compared to experimental data
collected from Zhang and Moore [48] in Section 5.2. Finite element
simulations are reported in Section 5.3. A discussion regarding
both the constitutive modeling and the numerical algorithms is
conducted in Section 6. Conclusions are drawn in Section 7. The
paper closes with two appendices. Appendix A develops the
computation of the consistent tangent operator, and Appendix B
details the derivation of the closed-form solution in uniaxial
tension.

The following abbreviations are used throughout the text. VE:
viscoelastic(ity), VP: viscoplastic(ity), EVP: elasto-viscoplastic(ity),
and VE–VP: viscoelastic(ity)-viscoplastic(ity).

Boldface symbols designate second or fourth-rank tensors, as
indicated by the context. Dyadic and inner products are expressed
as:

ða� bÞijkl ¼ aijbkl; a : b ¼ aijbji; ðA : bÞij ¼ Aijklblk;

where summation over a repeated index is supposed. The symbols 1
and I designate the second- and fourth-rank symmetric identity

tensors, respectively. Finally, the spherical and deviatoric operators
Ivol and Idev are given by:

Ivol � 1
3

1� 1 and Idev � I� Ivol:

2. Constitutive equations

The constitutive model is based on the assumption that the to-
tal strain is subdivided into VE and VP parts:

� ¼ �ve þ �vp: ð1Þ

This strain decomposition has some physical basis. Indeed, for semi-
crystalline polymers, several micromechanical models suppose that
cyrstalline lamellae and amorphous polymer chains obey VP and VE
models, respectively, and are assembled in series (and thus follow a
Reuss model); e.g. Nikolov et al. [32].

2.1. Linear viscoelastic part

The Cauchy stress r(t) is related to the history of VE strains
�ve(s) for s 6 t via a linear VE model expressed by Boltzmann’s
hereditary integral [5]:

rðtÞ ¼
Z t

�1
Eðt � sÞ :

@�ve

@s
ds: ð2Þ

For an isotropic material, the fourth-rank relaxation tensor is writ-
ten as:

EðtÞ ¼ 2GðtÞIdev þ 3KðtÞIvol; ð3Þ

where G(t) and K(t) are shear and bulk relaxation functions, respec-
tively, that can be expressed in the form of Prony series:

GðtÞ ¼ G1 þ
XI

i¼1

Gi exp � t
gi

� �
and

KðtÞ ¼ K1 þ
XJ

j¼1

Kj exp � t
kj

� �
: ð4Þ

Here, gi (i = 1, . . . , I) and kj (j = 1, . . . , J) are the deviatoric and volu-
metric relaxation times, respectively, Gi (i = 1, . . . , I) and Kj

(j = 1, . . . , J) are the corresponding moduli or weights, and G1 and
K1 are the long-term elastic shear and bulk moduli.

Then, by substituting Eqs. (3) and (4) into Eq. (2), the deviatoric
(s(t)) and dilatational (rH(t)) parts of the stress tensor may be ex-
pressed in function of the deviatoric (n(t)) and dilatational (�H(t))
parts of the strain tensor:

sðtÞ ¼ 2G1nveðtÞ þ
PI

i¼1
siðtÞ;

rHðtÞ ¼ 3K1�ve
H ðtÞ þ

PJ

j¼1
rHj
ðtÞ;

8>>><>>>: ð5Þ

where viscous components are defined by:

siðtÞ � 2Gi exp � t
gi

� � R t
�1 exp s

gi

� �
@nve

@s ds;

rHj
ðtÞ � 3Kj exp � t

kj

� � R t
�1 exp s

kj

� �
@�ve

H
@s ds:

8><>: ð6Þ

2.2. Viscoplastic part

In the present work, only the rate-dependent J2 VP model was
implemented. However, some results of the proposed algorithm
are general and valid for other VP models, as discussed in
Section 6.1. For J2 VP with isotropic hardening, the yield function
is given as follows:
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