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g r a p h i c a l a b s t r a c t

Simple, yet accurate expressions for the local interfacial evaporation flux and for the total evaporation rate of drying sessile droplets are obtained numer-
ically by using the combined field approach. The results indicate that the variation of the total evaporation rate with the contact angle will change its trend
as the evaporative cooling effect becomes significant.
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a b s t r a c t

The evaporation along the surface of pinned, sessile droplets is investigated numerically by using the
combined field approach. In the present model, the evaporative cooling at the droplet surface which leads
to a reduction in the evaporation is taken into account. Simple, yet accurate analytical expressions for the
local evaporation flux and for the total evaporation rate of sessile droplets are obtained. The theoretical
analyses indicate that the reduction in the evaporation becomes more pronounced as the evaporative
cooling number Ec increases. The results also reveal that the variation of total evaporation rate with con-
tact angle will change its trend as the intensity of the evaporative cooling changes. For small values of Ec,
the total evaporation rate increases with the contact angle, the same as predicted by Deegan et al. and by
Hu and Larson in their isothermal models in which the evaporative cooling is neglected. Contrarily, when
the evaporative cooling effect is strong enough, the total evaporation rate will decrease as the contact
angle increases. The present theory is corroborated experimentally, and found in good agreement with
the expressions proposed by Hu and Larson in the limiting isothermal case.
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1. Introduction

The evaporation of sessile droplets is not only related with
common, everyday phenomena, but also be of significant impor-
tance in many scientific and industrial fields. A comprehensive
understanding of the droplet evaporation is urgently needed in
the evaporation-based applications, such as the high-throughput
automatic DNA mapping [1,2], the disease diagnosis [3], the fabri-
cation of colloidal photonic crystals [4] and the ink-jet printing of
functional materials [5–7].

Maxwell [8] firstly developed a basic model that related the
droplet evaporation to the vapor diffusion in the quiescent air,
and derived an analytical equation for the evaporation of spherical
droplets. Picknett and Bexon [9] further investigated the evapora-
tion of sessile droplets and pointed out that the evaporation of
drops on a surface mainly includes two distinct phases: a constant
contact radius phase in which the contact angle decreases while
the contact line is pinned, and a constant contact angle phase
where the contact radius recedes while the contact angle remains
constant. The pining of the droplet during evaporation can be
attributed to the strong solid–liquid intermolecular interaction of
the liquid with the substrate, which may be the result of the
re-orientation, rearrangements, overturning, and desorption of
the substrate surface molecules [10–14]. Since nearly the whole
evaporating time often occurs at the first phase, we discuss here the
constant contact radius phase in which the contact line is pinned.

By supposing the evaporation is governed by the vapor diffusion
in the surrounding air, the droplet evaporation can be regarded as a
quasi-steady state since the vapor concentration above the droplet
surface adjusts rapidly compared to the time required to
evaporation [15]. This means that the vapor concentration in the
atmosphere is applicable to the Laplace’s equation. By further
assuming that the vapor concentration just above the liquid-air
surface is saturated and equals to a constant (referred to as the
‘‘isothermal model” in the following), an analytic solution for the
evaporation flux distribution along the droplet surface was
obtained by Picknett and Bexon [9], Deegan et al. [16,17] and
Popov [18]. The results indicate that, when the contact angle is
not larger than 90�, the evaporation flux along the droplet surface
increases from the top center of the droplet to the contact line, and
being singular at the droplet edge.

Considering the nonuniform evaporation flux along the droplet
surface, Deegan et al. [16,17] indicated that the radically outwards
flow inside the droplet should be driven, which can carry the
dispersed solids to the vicinity of contact line, and form a ring-
shaped stain after the droplet dries out. Moreover, the nonuniform
evaporation flux and the droplet geometry will also produce a tem-
perature gradient along the surface. Hu and Larson [19,20] found
that such a temperature gradient may generate a convective
Marangoni flow inside the droplet and hence alter the deposition
pattern, resulting in a center deposit or a uniform deposit. Risten-
part et al. [21] and Xu et al. [22] further discussed the influence of
the thermal conductivity and the thickness of the underlying sub-
strate on the direction of the Marangoni flow. Up to now, there is a
tremendous amount of research indicating that the deposition pat-
tern is closely related to the distribution of the evaporation flux
along the droplet surface [23,24]. Thus, to predict and to control
the deposition of drying droplets, the evaporation of sessile dro-
plets has attracted extensive attention in the recent years [25–42].

Hu and Larson [15] computed the vapor concentration in the
surrounding atmosphere by using a finite element method and
obtained an accurate empirical expression for the evaporation flux
of sessile droplets. In their model, the droplet surface is considered
to be isothermal and therefore the evaporation is only determined
by the vapor diffusion in the air. However, the temperature
variation at the liquid-air surface can affect significantly the

droplet evaporation. Due to the temperature drop at the droplet
surface, the vapor concentration just above the surface will not
always be a constant, and a large discrepancy in evaluating the
total evaporation rate of sessile droplet may occur [43–46].

Considering the vapor saturation concentration along the ses-
sile droplet surface to be a function of the liquid temperature there
instead of a simply constant, Dunn et al. [47–49], Sefiane et al. [29]
and Saada et al. [50] generalized the basic isothermal model to
include the thermal effect resulting from the evaporative cooling
and thus coupled the problem for the vapor concentration in the
surrounding air and that for the temperature in the liquid and
the underlying substrate. Sefiane et al. [51,52] further introduced
a dimensionless number SB which can be used to evaluate the
threshold for transition from the isothermal case to a nonisother-
mal one. Unifying the coupled physics fields in the liquid evapora-
tion into one single field and making the interaction unnecessary,
Xu and Ma [53] presented the combined field approach and
derived a dimensionless number Ec to identify the intensity of
the evaporative cooling. Wang et al. [54] further investigated the
combined effects of the evaporative cooling and the underlying
substrate on the droplet evaporation, and showed how the evapo-
rative cooling affects the influences of substrate properties on the
droplet evaporation.

Because of the pronounced effect of the evaporative cooling on
the evaporation, it is evidenced that it should be included in the
analytic expressions for the droplet evaporation. Empirical expres-
sions for the evaporation flux and for the total evaporation rate
incorporating the evaporative cooling effect would be more useful
in evaluating the Marangoni effect and in computing the flow field
of drying droplets. In the following sections of the present paper, a
mathematical model that includes the evaporative cooling at the
droplet interface is first numerically solved. Then, simple, yet
accurate analytical expressions for the evaporation flux and for
the evaporation rate of drying droplets are obtained. The theoreti-
cal prediction is corroborated experimentally, and found in good
agreement with the theory presented by Hu and Larson [15]. The
present work may contribute to the body of knowledge concerning
the droplet evaporation.

2. Mathematic model

Here, we focus our attention on the effect of the evaporative
cooling at the droplet surface and neglect the influence of the
underlying substrate. We consider a small, pinned, and slowly
evaporating sessile droplet with contact angle of h, contact line
radius of R, and thermal conductivity of KL on a flat isothermal sub-
strate with the room temperature T0. The vapor saturation concen-
tration along the droplet surface is assumed to be a linear function
of the local liquid temperature, given by csat(T) = c0 + b(T � T0),
where b ¼ dcsat

dT jT¼T0
, and c0 = csat(T0) is the saturation concentration

at T0 (see Fig. 1).
By using the combined field approach introduced by Xu and Ma

[53], the equations for the vapor concentration c in the surround-
ing air and the temperature T in the droplet can be written in a
dimensionless form as:

~r2~T1 ¼ 0 for 0 6 ~z 6 ~hð~rÞ; ~r 6 1 ð1Þ

~r2~T2 ¼ 0 for ~z P ~hð~rÞ; ~r 6 1; ~r > 1 ð2Þ

~T1 ¼ ~T2;
@~T1

@n
¼ Ec

@~T2

@n
for ~z ¼ ~hð~rÞ; ~r 6 1 ð3Þ

~T1 ¼ 0 for ~z ¼ 0; ~r 6 1 ð4Þ
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