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a b s t r a c t

A time-dependent convection–diffusion-reaction problem is discretized in space by a continuous finite
element method with local projection stabilization and in time by a discontinuous Galerkin method.
We present error estimates for the semidiscrete problem after discretizing in space only and for the fully
discrete problem. Numerical tests confirm the theoretical results.

� 2011 Elsevier B.V. All rights reserved.

1. Introduction

The modeling of many technical and physical processes leads to
descriptions which contain time-dependent convection–diffusion-
reaction equations as subproblems. Their accurate and efficient
solution is often critical for accuracy and efficiency of the whole
process.

There are several approaches for discretizing time-dependent
convection–diffusion-reaction problems by finite element meth-
ods. Firstly, space–time elements combined with some stabiliza-
tion could be used [1,2]. This results into (d + 1)-dimensional
problems in each space–time slab which are more difficult to han-
dle than the corresponding d-dimensional problems in space. Sec-
ondly, semidiscretization as intermediate steps can be used. Here,
we distinguish between horizontal and vertical methods of lines.
The vertical method of lines discretizes first in space and then in
time while the horizontal method of lines (or Rothe’s method) ap-
plies first a time discretization which is followed by a discretiza-
tion in space.

We will apply the vertical methods of lines and are interested in
convection-dominated convection–diffusion-reaction problems. It
is well known that standard finite element methods will lead to
solutions which contain global unphysical oscillations. In order to
prevent this, stabilization techniques are applied. One of the most

popular methods is the streamline-upwind Petrov–Galerkin meth-
od (SUPG) which was introduced by Hughes and Brooks [3] for
steady problems. However, the main drawback of the SUPG for
time-dependent problems is the fact that for ensuring the consis-
tency of the method the time derivative, the source term, and sec-
ond order derivatives have to be included into the stabilization
term. In particular, the assembling of the latter ones is time con-
suming on non-affine meshes. Moreover, the strong consistency
requirement leads to a wide (and generally unphysical) coupling
of the unknowns.

An alternative to SUPG are symmetric stabilization method
such as the local projection stabilization (LPS) [4–6], the continu-
ous interior penalty method (CIP) [7,8], the subgrid scale modeling
(SGS) [9,10], and the orthogonal subscales method (OSS) [11,12].
They have been investigated during the last decade. The stabiliza-
tion terms of CIP, OSS, and the two-level version of LPS introduce
additional couplings between degrees of freedoms which do not
not belong to the same finite element cell. Hence, the sparsity of
the element matrices decreases and one needs appropriate data
structures for an efficient implementation into a given computer
code. This is not the case for the one-level variant of the LPS
although the system looks larger at the first glance. However, the
additional degrees of freedom which occur due to the enrichment
can be eliminated locally by static condensation. In this way, one
can work with the same number of degrees of freedom which
are needed to achieve the appropriate approximation order. Fur-
thermore, neither time derivatives nor second order derivatives
have to be assembled for the stabilization term of LPS. Originally
proposed for the Stokes problem [13], the LPS was extended
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successfully to transport problems [4]. The application of local pro-
jection methods to Oseen problems are studied in [5,6,14]. The lo-
cal projection method provides additional control on the
fluctuations of the gradient or parts of its. Although, the methods
is weakly consistent only, the consistency error can be bounded
such that the optimal order of convergence is maintained.

The discontinuous Galerkin (dG) method was first introduced
by Reed and Hill [15] for neutron transport equations. The analysis
of dG methods starts with the works of Lesaint and Raviart [16]
and Johnson and Pitkäranta [17]. Since then, many different as-
pects of dG methods have been investigated in several articles.
We will just mention a few of them: Delfour et al. [18], Larsson
et al. [19], Schötzau and Schwab [20,21], the survey article [22],
and the books [23,24].

Stabilized finite element methods for time-dependent convec-
tion–diffusion-reaction problems have been investigated by sev-
eral authors. We refer to [25,26] which consider different
stabilization techniques including SUPG and to [11] using OSS.
The stability property of consistent stabilization methods in the
small time step limit have been discussed in [27,28]. General sym-
metric stabilizations in space combined with the h-method and the
second order backward differentiation formula in time have been
investigated in [29]. The coupling of other stabilization techniques
in the one dimensional case with the finite difference method in
time, in particular, vertical and horizontal methods of lines have
been discussed in [30]. The standard Galerkin method in space
but on a layer adapted Shishkin mesh and different time discretiza-
tion have been studied in [31]. The dG method has been analyzed
in space [32,33] and in space and time [34]. A numerical study of
SUPG applied to time-dependent convection diffusion problems
with small diffusion parameter can be found in [35]. The SUPG
combined with finite differences in time for the pure transport
equation has been studied in [36].

The aim of our paper is to combine the local projection stabil-
ization in space with the discontinuous Galerkin method in time.
We will give error estimates for the semidiscrete problem after dis-
cretizing in space by a finite element method with local projection
stabilization and for the fully discrete problems.

The plan of the paper is as follows. Section 2 introduces the
problem under consideration and defines the basic notations. The
semidiscretization in space and the local projection stabilization
are introduced in Section 3. Furthermore, an optimal error estimate
for the semidiscretized problems will be given. Section 4 presents
the error analysis for the fully discrete problem after a time dis-
cretization by a discontinuous Galerkin method. Numerical results
which confirm the theoretical predictions will be shown in Section
5. Finally, Section 6 will provide some concluding remarks.

2. Notations and preliminaries

Let X � Rd be a bounded domain in Rd; d ¼ 2;3, with polygonal
(d = 2) or polyhedral (d = 3) Lipschitz continuous boundary C = oX
and T > 0. We set QT := X � (0,T) and consider the following time-
dependent convection-diffusion-reaction problem:

Find u : Q T ! R such that

ut � eDuþ b � ruþ ru ¼ f in Q T ;

u ¼ 0 on @X� ð0; TÞ;
uð�;0Þ ¼ u0 in X:

8><>: ð1Þ

We assume that b, r are independent on time t, whereas f may
depend on t. Furthermore, let the data b, r, u0 and f be sufficiently
smooth on X and X � (0,T), respectively. The parameter e is sup-
posed to be positive. By the transformation u(x, t) = eKtv(x, t) with
a suitably large constant K, one obtains always a system for v of
form (1) such that

r� 1
2

div b P r0 > 0 in X: ð2Þ

Throughout this paper, standard notations and conventions will
be used. Let Hm(X) denote the Sobolev space of functions with
derivatives up to order m in L2(X). We denote by (� , �) the inner
product in L2(X) and by k � k the associated L2-norm. The norm in
Hm(X) is defined as

kvkm ¼
X
jaj6m

kDavk2

 !1=2

:

We consider also certain Bochner spaces. For this let X be a Ba-
nach space equipped with norm k � kX and seminorm j � jX. Then, we
define

Cð0; T; XÞ ¼ v : ½0; T� ! X; v continuousf g;

L2ð0; T; XÞ ¼ v : ð0; TÞ ! X;
Z T

0
kvðtÞk2

Xdt <1
� �

;

Hmð0; T; XÞ ¼ v 2 L2ð0; T; XÞ :
@jv
@tj
2 L2ð0; T; XÞ; 1 6 j 6 m

( )
;

where the derivatives @jv/@tj are understood in the sense of distri-
butions on (0,T). In the following we use the short notation
Y(X) := Y(0,T;X). The norms and seminorms in the above defined
spaces are given by

kvkCðXÞ ¼ sup
t2½0;T�

kvðtÞkX ; kvk2
L2ðXÞ ¼

Z T

0
kvðtÞk2

Xdt;

jv j2HmðXÞ ¼
Z T

0

@mv
@tm

���� ����2

X

dt; kvk2
HmðXÞ ¼

Z T

0

Xm

j¼0

@jv
@tj

�����
�����

2

X

dt:

Let us introduce the space V ¼ H1
0ðXÞ, its dual space H�1(X), and

h � , � i for the duality product between these two spaces. Then, a
function u is a weak solution of problem (1), if

u 2 L2 H1
0

� �
; u0 2 L2ðH�1Þ; ð3Þ

and for almost all t 2 (0,T),

hu0ðtÞ; vi þ aðuðtÞ; vÞ ¼ hf ðtÞ; vi 8v 2 V ;

uð0Þ ¼ u0:

�
ð4Þ

Here the bilinear form a is given by

aðu;vÞ :¼ eðru;rvÞ þ ðb � ru;vÞ þ ðru; vÞ:

Note that (3) implies the continuity of u as a mapping of
[0,T] ? L2(X) such that the initial condition u(0) = u0 is well-
defined. In what follows, we shall denote by f0, f00, and f(q) the first,
second, and qth order time derivative of f, respectively.

3. Semidiscretization and local projection stabilization

For the finite element discretization of (4), let fT hg denote a
family of shape regular triangulations of X into d-simplices, quad-
rilaterals or hexahedra such that

X ¼
[

K2T h

K:

The diameter of K 2 T h will be denoted by hK and the mesh size
h is defined by h :¼maxK2T h

hK . We will consider the one-level LPS
in which approximation and projection spaces live on the same
mesh. For other variants of LPS we refer to [6,37–41].

Let Vh � V denote the approximation space of continuous,
piecewise polynomials and Dh be the projection space of discontin-
uous, piecewise polynomials. Let DhðKÞ ¼ fqhjK : qh 2 Dhg and
pK : L2ðKÞ ! DhðKÞ the local L2-projection into DhðKÞ. Define the
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