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The paper presents a phenomenological model for the description of orthotropic elasto-plastic solids. The
formulation and computational implementation are based on a multiplicative decomposition of the
deformation gradient tensor into an elastic and a plastic part. This decomposition introduces an incom-
patible intermediate manifold, which is identified in this work as an isoclinic configuration as proposed
by Mandel. A rate-independent constitutive model is developed for the modelling of isotropic elastic and
orthotropic plastic material behaviour. The latter arises due to pre-existing preferred orientations in the
material and is described by a Hill-type yield criterion. It is assumed that further deformations induce
only a negligible change of the locally preferred orientations to each other, hence, the shape of the yield
surface remains the same. Sheet forming processes are sufficiently described by such assumptions. Fur-
thermore, the notion of a plastic spin as introduced by Dafalias, which is the spin of the continuum rel-
ative to the material substructure, plays a crucial role in the evolution of the orthotropic axes.
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Representative numerical simulations demonstrate the performance of the proposed model.
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1. Introduction

Metal sheets undergo large deformations in forming processes.
These sheets are normally subject to a rolling process in their pro-
duction, which results in a change to the crystallographic texture
and the introduction of preferred directions in the macroscopic
behaviour. This gives rise to an anisotropic behaviour in plastic
deformations. Moreover, these preferred directions rotate with
evolution of plasticity, which is described by the notion of plastic
spin. Whilst the current literature is replete with theoretical dis-
cussions regarding the nature of plastic spin, there has so far been
a lack of numerical investigations into the phenomena.

In finite plastic deformations, the kinematical behaviour of the
material substructure, which defines the material symmetries
and hence yield loci, is not inevitably identical to that of the con-
tinuum. This idea introduced the notion of plastic spin by Dafalias
[10-12] and Loret [35], which accounts for the difference of the
spin of the material substructure to that of the continuum. Indeed
Mandel [37,38] and Kratochvil [25,26] suggested that a complete
macroscopic theory of plasticity must incorporate constitutive
equations for the plastic spin as well, alongside the plastic part
of the rate of deformation. Furthermore, Kratochvil [26] noted that
the plastic spin vanishes in isotropic materials.
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The notion of plastic spin is believed to be crucial in anisotropic
materials. This has been thoroughly investigated in a series of
papers with Paulun and Pecherski [43], Zbib and Aifantis [52,53],
Dafalias and Aifantis [13], Aravas [2], Lubarda and Shih [36],
Schieck and Stumpf [45], Kuroda [28], Levitas [32] and Itskov and
Aksel [22] providing a representative sample of the work in this
area. Unfortunately, the notion of plastic spin itself, has led to con-
fusion and different interpretations in the literature, see especially
van der Giessen [49] and Dafalias [14] for a summary and discus-
sion. There is some work with a stronger focus on the numerical
implementation including Dafalias [15], Han et al. [18], Choi
et al. [6,7], Harrysson and Ristinmaa [19], Kim et al. [23] and Hei-
dari et al. [20]. Next to that, there is literature about the relation of
the common approach to the notion of plastic spin to Cosserat the-
ory, see for instance Lippmann [33]. Experimental investigations
into the orientational axes of metal sheets and their relation to
the notion of plastic spin can be found for instance in Boehler
[4], Bunge [5], Kim and Yin [24], Truong Qui and Lippmann [47]
and Wu et al. [51]. A model on the mechanics of anisotropic poly-
mers similar to this work is given in Pereda et al. [44]. Although the
evolution of anisotropic directions appears to be important partic-
ularly for steel sheets, the literature is scarce on the numerical
treatment of practically relevant applications such as sheet form-
ing processes.

The model presented in this paper is based on the multiplicative
decomposition of the deformation gradient F =F°F’ according to
Kroner [27] and Lee [30] into an elastic and a plastic part. This
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decomposition gives rise to an incompatible intermediate mani-
fold, which is identified in this work as an isoclinic configuration
as proposed by Mandel [37] and, furthermore, is the basis for the
algorithmic treatment of the thermodynamic considerations. A
rate-independent phenomenological constitutive model is devel-
oped to model isotropic elastic and orthotropic plastic material
behaviour. The latter arises due to pre-existing preferred orienta-
tions in the material and is described by a Hill-type yield criterion.
In this work it is assumed that the strains in the production process
of a sheet, which induce the pre-existing preferred orientations,
are much larger then the strains in the subsequent deformation,
e.g., of a deep drawing process. Hence, further deformations do
not change the orientation of these orthotropic axes to each other.
However, these form a directional triad, which can be rotated as a
whole. Furthermore, the notion of a plastic spin is introduced,
which governs the evolution of the orthotropic axes. This allows
the orthotropic axes to be rotated into a more favourable direction
by the plastic spin. Based on these equations the algorithmic treat-
ment yields a general return mapping algorithm including isotro-
pic hardening effects.

The outline of the paper is as follows. Section 2 provides basic
definitions and introduces the material and substructural spins,
the difference of which, leads to the notion of plastic spin. Section
3 presents the elasto-plastic model employing an isoclinic inter-
mediate configuration and provides a derivation of an orthotropic
yield criterion based on representation theorems. Section 4 pre-
sents the algorithmic formulation of the model and gives the stress
and consistent tangent modulus for a finite element implementa-
tion. The paper ends in Section 5 with a range of numerical exam-
ples in a finite element programme and conclusions given in
Section 6.

Classical tensor notation is used throughout this paper. Fourth-
order tensors are indicated with typeface A, whereas bold face let-
ters A denote second-order tensors or vectors (this should be clear
from the context) and, finally, scalars are written as A. The expres-
sion A ® B declares a dyadic product like A;B; and C : D denotes the
contraction of tensors over two indices like C;DY.

2. Material versus substructural spin
2.1. Basic definitions

A classical continuum is considered in the following. Each par-
ticle of a body is described by the position vector X in a fixed ref-
erence configuration # in R>. The position vector X gives the same
particle in the spatial configuration .#. Furthermore, the motion of
the body in time t is a mapping ¢, which is defined by x = ¢(X,t).
The deformation gradient is defined as

19),4 .
F X with J=det[F] >0 (2.1)
The velocity vector v = x gives the definition of the spatial velocity
gradient tensor as

1= =FF " 2.2

- 22)
A superposed dot denotes the material time rate. The spatial veloc-
ity gradient tensor can be decomposed into a symmetric and a
skew-symmetric part as

I=d+w, with d:%(l+lT) and w:%(l—lT). (2.3)
The quantities d and w may be called the rate of deformation and
material spin tensor, respectively.

Finally, the Jaumann co-rotational rate is introduced of a first-
order tensor A and second-order symmetric tensor B as

A—A—AA and B=B+BA— AB, (2.4)

where A designates a spin tensor.
2.2. The material spin

A unit vector n is considered to be attached to a material fibre.
This fibre is instantaneously aligned with one of the eigenvectors
of the rate of deformation tensor d, hence, in the principal direc-
tions of stretching. The Jaumann co-rotational rate of this orienta-
tional quantity can be expressed as n=n— wn = 0; which equals
zero, because this rate is that determined by an observer who spins
with the average angular velocity of the material element. There-
fore, the material spin tensor w at a point X in .# defines the spin
of a material line element and can be written as

n=wn. (2.5)

However, it should be kept in mind that Eq. (2.5) holds only for unit
vectors attached to material fibres that are momentarily aligned
with the eigenvectors of d and not for all fibres. This allows one
to interpret the material spin tensor w as responsible for the “mac-
roscopic” rotation.

2.3. The substructural spin

A purely orientational internal variable, e, shall be considered in
an anisotropic plastic model, e.g., a unit vector specifying a fibre
reinforced direction. The rate of e can be described as

é=we (2.6)

during the process of plastic deformation. In Eq. (2.6) a different
spin tensor  is introduced on purpose. The spin w of the “substruc-
ture”, which governs the behaviour of the internal variables, is not
necessarily the same as that of the continuum w in the Eulerian
manifold. This allows one to interpret the substructural spin tensor
w as being responsible for the “microscopic” rotation.

2.4. The plastic spin

The notion of the plastic spin  relates the continuum to the
substructure and furthermore distinguishes between the kinemat-
ics of the continuum and the kinematics of the substructure. It is
defined according to Dafalias [10-12] and Loret [35] as

Q=W - . (2.7)

The reader should note that Eq. (2.7) is defined in a plastically de-
formed isoclinic intermediate configuration and WP presents the
plastic material spin defined therein. This is in advance of Section
3 to which the reader is referred to for details. In a complete aniso-
tropic plastic model, a constitutive equation should be provided for
the plastic spin as well. If the plastic state and thus the plastic mate-
rial spin WP is known and a constitutive equation for € is given,
then the spin of the material substructure w is indirectly given,
which defines the evolution of anisotropy according to Eq. (2.6).

Unfortunately, there are different definitions of the notion of
plastic spin in the literature. This confusion occurred through spe-
cial assumptions about the intermediate configuration for finite
plasticity, see for instance van der Giessen [49] and Dafalias [14]
for a discussion. This paper considers its meaning in the sense of
Dafalias.

3. Formulation of elasto-plastic kinematics

The common description of kinematics of finite elasto-plastic
deformation is based on the multiplicative decomposition of the
deformation gradient F = F°F® as proposed by Kroner [27] and Lee
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