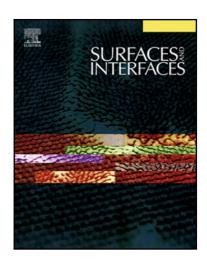
Accepted Manuscript

H₂ generation from NaBH₄ methanolysis via magnetic field sensitive ionic liquid coated silica particles as catalyst


Nurettin Sahiner, Alper O. Yasar, Nahit Aktas

PII: S2468-0230(17)30049-4 DOI: 10.1016/j.surfin.2017.04.006

Reference: SURFIN 89

To appear in: Surfaces and Interfaces

Received date: 5 March 2017 Revised date: 10 April 2017 Accepted date: 19 April 2017

Please cite this article as: Nurettin Sahiner , Alper O. Yasar , Nahit Aktas , H_2 generation from NaBH₄ methanolysis via magnetic field sensitive ionic liquid coated silica particles as catalyst, *Surfaces and Interfaces* (2017), doi: 10.1016/j.surfin.2017.04.006

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

H₂ generation from NaBH₄ methanolysis via magnetic field sensitive ionic liquid coated silica particles as catalyst

*Nurettin Sahiner^{a,b,}, Alper O. Yasar^a, Nahit Aktas^c

Tel: +90-2862180018-2041; Fax: +90-2862181948

ABSTRACT

Upon the preparation of Magnetic (Fe₃O₄) nanoparticles (NPs), they were coated with aminofunctionalized silica (SiO₂@NH₂) via the modified Stöber method. SiO₂ coated Fe₃O₄ (Fe₃O₄@SiO₂) particles and SiO₂@NH₂ coated Fe₃O₄ (Fe₃O₄@SiO₂@NH₂) particles were turned into ionic liquid (IL) colloids as Fe₃O₄@SiO₂@NH₃⁺Cl⁻, Fe₃O₄@SiO₂@NH₃⁺NO₃⁻ and Fe₃O₄@SiO₂@NH₃⁺HSO₄⁻ by the treatment of Fe₃O₄@SiO₂@NH₂ with hydrochloric acid (HCl), nitric acid (HNO₃) and sulfuric acid (H₂SO₄), respectively. The size of the prepared silica-based particles was approximately 500 nm by SEM images, and the zeta potential values varying between -59 and +26 mV. The catalytic activity performances of these silica-based particles as catalysts were investigated for H₂ generation from methanolysis of NaBH₄ in terms of the types of particles, reusability, recyclability, the concentration of NaBH₄, and the reaction temperature. Amongst the prepared IL colloids, Fe₃O₄@SiO₂@NH₃⁺Cl⁻ particles were found to be the most effective catalysts for the methanolysis reaction of NaBH₄. The maximum Hydrogen Generation Rate (HGR) value of 13188 ± 196 mL H_2 g^{-1} min⁻¹ was attained at 500 mM NaBH₄ by using 50mg Fe₃O₄@SiO₂@NH₃⁺Cl⁻ as catalyst at 25 °C. Additionally, turn over frequency (TOF) value was calculated as $43.1 \pm 3.1 \text{ H}_2 \text{ mol (mol of N.min)}^{-1}$ for Fe₃O₄@SiO₂@NH₃+Cl⁻ under the same reaction conditions. Moreover, activation energy (Ea) values for the methanolysis of NaBH₄ using Fe₃O₄@SiO₂@NH₃⁺Cl⁻ particles as catalyst were found as 32.5 ± 0.5 , 39.9 ± 0.3 and 24.4± 0.7 kJ mol⁻¹ in the temperature range of -15-45, -30-0 and 15-45 °C, respectively, that are

^aFaculty of Sciences and Arts, Chemistry Department, Canakkale Onsekiz Mart University, Terzioglu Campus, Canakkale 17100, Turkey.

^bNanoscience and Technology Research and Application Center (NANORAC), Canakkale Onsekiz Mart University, Terzioglu Campus, Canakkale 17100, Turkey.

^cEngineering Faculty, Chemical Engineering Department, Yuzuncu Yil University, Van, 65080, Turkey.

^{*}Corresponding Author: sahiner71@gmail.com (N. Sahiner).

Download English Version:

https://daneshyari.com/en/article/4985627

Download Persian Version:

https://daneshyari.com/article/4985627

<u>Daneshyari.com</u>