Accepted Manuscript

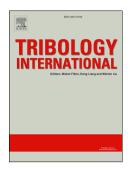
Effective lubricant additive of nano-Ag/MWCNTs nanocomposite produced by supercritical CO₂ synthesis

Yuan Meng, Fenghua Su, Yangzhi Chen

PII: S0301-679X(17)30452-8

DOI: 10.1016/j.triboint.2017.09.037

Reference: JTRI 4901


To appear in: Tribology International

Received Date: 16 July 2017

Revised Date: 27 September 2017 Accepted Date: 30 September 2017

Please cite this article as: Meng Y, Su F, Chen Y, Effective lubricant additive of nano-Ag/MWCNTs nanocomposite produced by supercritical CO₂ synthesis, *Tribology International* (2017), doi: 10.1016/j.triboint.2017.09.037.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Effective lubricant additive of nano-Ag/MWCNTs

nanocomposite produced by supercritical CO₂ synthesis

Yuan Meng, Fenghua Su*, Yangzhi Chen

School of Mechanical and Automotive Engineering, South China University of

Technology, Guangzhou, 510640, PR China

Abstract:

Silver nanoparticles dotted on the external walls of multi-walled carbon nanotubes

(MWCNTs) were prepared by an aldehyde reduction process in supercritical carbon

dioxide (scCO₂) fluid. The silver nanoparticles with narrow size distribution of 5-15 nm

are uniformly anchored on MWCNT walls. The prepared nanocomposite of

nano-Ag/MWCNTs was used as lubricant additive in 10w40 engine oil and its lubricating

performances was evaluated by a four-ball tribometer. The friction coefficient and wear

scar diameter were reduced by 36.4% and 32.4% respectively, when the engine oil was

dispersed with 0.18 wt. % nanocomposite. After synthetically analyzing worn surface by

means of scanning electron microscopy and X-ray photoelectron spectroscopy, the

lubrication mechanism of this nanocomposite as oil additive is discussed and postulated.

Keywords: nano-Ag/MWCNTs nanocomposite; scCO₂ synthesis; lubricant additive;

Corresponding author: Fax: +86 20 87112341

E-mail address: fhsu@scut.edu.cn (F. Su).

1

Download English Version:

https://daneshyari.com/en/article/4985723

Download Persian Version:

https://daneshyari.com/article/4985723

Daneshyari.com