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a b s t r a c t

We derive a posteriori error estimates for a class of second-order monotone quasi-linear diffusion-type
problems approximated by piecewise affine, continuous finite elements. Our estimates yield a guaran-
teed and fully computable upper bound on the error measured by the dual norm of the residual, as well
as a global error lower bound, up to a generic constant independent of the nonlinear operator. They are
thus fully robust with respect to the nonlinearity, thanks to the choice of the error measure. They are also
locally efficient, albeit in a different norm, and hence suitable for adaptive mesh refinement. Moreover,
they allow to distinguish, estimate separately, and compare the discretization and linearization errors.
Hence, the iterative (Newton–Raphson, fixed point) linearization can be stopped whenever the lineariza-
tion error drops to the level at which it does not affect significantly the overall error. This can lead to
important computational savings, as performing an excessive number of unnecessary linearization iter-
ations can be avoided. A strategy combining the linearization stopping criterion and adaptive mesh
refinement is proposed and numerically tested for the p-Laplacian.

� 2010 Elsevier B.V. All rights reserved.

1. Introduction

Let X be an open polyhedron of Rd; d P 2. We consider the
nonlinear problem in conservative form

�r � rðruÞ ¼ f in X; ð1:1aÞ
u ¼ 0 on @X: ð1:1bÞ

The scalar-valued unknown function u is termed the potential, and
the Rd-valued function �r(ru) is termed the flux. We assume that
the flux function r : Rd ! Rd takes the following quasi-linear form

8n 2 Rd; rðnÞ ¼ aðjnjÞn; ð1:2Þ

where j�j denotes the Euclidean norm in Rd and where a : Rþ ! R is
a given function. The function a is assumed below to satisfy a
growth condition of the form a(x) � xp�2 as x ? +1 for some real
number p 2 (1,+1), so that the natural energy space V for the above
model problem is the Sobolev space W1;p

0 ðXÞ. The data f is taken in

Lq(X) where q :¼ p
p�1 so that 1

pþ 1
q ¼ 1. Hence, the model problem in

weak form amounts to finding u 2 V such that

ðrðruÞ;rvÞ ¼ ðf ; vÞ 8v 2 V ; ð1:3Þ

where (�, �) denotes the integral over X of the (scalar) product of the
two arguments. The function a satisfies monotonicity and continu-
ity conditions stated in Section 2 and ensuring that the problem
(1.3) is well-posed.

The prototypical example for the present model problem is the
so-called p-Laplacian, for which a(x) = xp�2. The a priori error anal-
ysis for approximating the p-Laplacian by piecewise affine, contin-
uous finite elements has been started by Glowinski and Marrocco
[23,24]; see also Ciarlet [15, p. 312]. One well-known difficulty
when working with the natural energy norm is that the derived er-
ror estimates are not sharp. This drawback has been circumvented
by Barrett and Liu [6] upon introducing a so-called quasi-norm,
thereby achieving optimal approximation results. The quasi-norm
of the error between the exact solution u and the approximate
solution, say uh, is a weighted L2-norm of the gradient r(u � uh),
where the weight depends on ru and ruh.

The a posteriori error analysis of finite element approximations
to a large class of nonlinear problems, including the present model
problems, has been started by Verfürth; see [33] and [34, p. 47].
The main result is a two-sided bound of the energy error by the
dual norm of the residual multiplied by suitable norms of the
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linearized operator at the exact solution, under the assumption
that this latter operator is invertible and locally Lipschitz-continu-
ous and that the approximate solution is sufficiently close to the
exact solution. This yields in particular residual-based estimators
in the energy norm. These estimators have been exploited, in par-
ticular, by Veeser [32] to prove the convergence of an adaptive fi-
nite element method for the p-Laplacian. Alternatively, quasi-norm
error estimates for the p-Laplacian have been analyzed by Liu and
Yan [28–30], leading to weighted residual-based estimators. Quasi-
norm residual-based estimators have been further explored by
Carstensen and Klose [9] with a focus on evaluating the constants
in the estimates and under the assumption that the gradient norm
of the approximate solution is positive everywhere in the domain.
Moreover, gradient recovery techniques have been analyzed by
Carstensen et al. [10] to estimate the quasi-norm of the error. Quite
recently, Diening and Kreuzer [19] have obtained two-sided
bounds for an appropriate measure of the error and proven the lin-
ear convergence of a suitable adaptive finite element method. The
error measure is the L2-norm of the difference F(ru) � F(ruh),
where the auxiliary vector field F is such that FðnÞ ¼ jrðnÞj

1
2jnj�

1
2n.

This error measure turns out to be equivalent to the quasi-norm
of the error, with constants depending on the nonlinearity (that
is, the properties of the function a in (1.2)).

We observe that, whatever the error measure, the above bounds
on the error involve constants depending on the function a. In the
case of the p-Laplacian, they depend on the Lebesgue exponent p.
Moreover, with a few exceptions, e.g., [9], the error upper bounds
involve unknown generic constants. Therefore, the first objective
of this work is to derive guaranteed bounds on the error, that is, er-
ror upper bounds without undetermined constants, and at the
same time ensure robustness, that is, two-sided error bounds
whose ratio is independent of the nonlinearity. To this purpose,
we use as error measure a residual flux-based dual norm, namely

J uðuhÞ ¼ sup
v2Vnf0g

ðrðruÞ � rðruhÞ;rvÞ
kvkV

:

Working with residual flux-based quantities to measure the error is
somewhat natural since fluxes satisfy basic conservation properties
that are at the heart of approximation methods, even using contin-
uous finite elements. Furthermore, the idea of using a dual norm is
inspired by the work of Verfürth where dual norms have been con-
sidered, e.g., in the context of parabolic [38] and convection-domi-
nated stationary convection–diffusion equations [40]. Dual residual
norms have also been considered for nonlinear problems in [33],
and the present dual norm has been considered in [11,12]. More re-
cently, it has been observed in [46] that residual flux-based error
measures are also natural in the context of diffusion problems with
heterogeneous coefficients. Furthermore, we remark that although
our error upper bounds are fully computable, the actual error mea-
sure is not, even if the exact solution is known; we will discuss be-
low how the error measure can be approximated in numerical
experiments with synthetic exact solutions so as to compute effec-
tivity indices. Note, however, that in practical computations, the ex-
act solution is never known and hence the error is never
computable. We also point out that achieving robust error esti-
mates does not mean necessarily that the error bounds can be ex-
tended to the limit cases p = 1 or p = +1, similar to the vanishing-
diffusion limit in convection–diffusion equations.

Our a posteriori error estimates are formulated in terms of a
H(div)-conforming flux reconstruction. For conforming finite ele-
ment methods, related earlier work in the linear case includes [1]
(here the flux is not explicitly reconstructed) and [7,17,27,31]. In
the spirit of Luce and Wohlmuth [31], guaranteed a posteriori esti-
mates of the present type were proposed in [45] for the Laplace
equation. They have been shown robust for inhomogeneous and

anisotropic diffusion in [46] and for the reaction–diffusion case
in [13]. We also refer to [22] for a unified setting encompassing
various discretization methods in the context of the heat equation.
Recently, Verfürth [41] derived another estimate based on flux
reconstruction for singularly perturbed diffusion problems and,
similar to [13,22,45,46], proved (see [41, Proposition 2.2]) that this
estimate is a lower bound for the classical residual one of [34]. In
the nonlinear case, the only work deriving a posteriori estimates
based on flux reconstruction we are aware of is [26]. Therein, qua-
si-linear diffusion problems similar to (1.1a)–(1.1b) are discretized
by various nonconforming locally conservative methods.

In the present paper, the a posteriori error analysis based on
H(div)-conforming flux reconstruction proceeds as follows. The er-
ror upper bound hinges on a local conservation property of the
reconstructed flux, say th; see Assumption 3.4. The error lower
bound hinges instead on an approximation property of th; see
Assumption 4.1. This approximation property enables us to prove
that our estimates are lower bounds for the classical residual ones.
We provide two examples for reconstructing the flux th satisfying
Assumptions 3.4 and 4.1 in the context of piecewise affine, contin-
uous finite elements. Higher-order methods are not considered
herein. This is motivated, in part, by the fact that in many cases
the exact solution u may not have much additional regularity be-
yond that of the natural energy space V; see [15, p. 324] for a sim-
ilar remark concerning the p-Laplacian.

The discrete problem amounts to a system of nonlinear equa-
tions, and, in practice, is solved using an iterative method involving
some kind of linearization. Given an approximate solution, say uL,h,
at a given stage of the iterative process and on a given mesh, there
are actually two sources of error, namely linearization and discret-
ization. Balancing these two sources of error can be of paramount
importance in practice, since it can avoid performing an excessive
number of nonlinear solver iterations if the discretization error
dominates. Therefore, the second objective of this work is to design
a posteriori error estimates distinguishing linearization and dis-
cretization errors in the context of an adaptive procedure. This type
of analysis has been started by Chaillou and Suri [11,12] for a cer-
tain class of nonlinear problems similar to the present one and in
the context of iterative solution of linear algebraic systems in
[25]; we also refer to [16] for adaptive numerical approximation
of nonlinear problems in the wavelets context. Chaillou and Suri
only considered a fixed stage of the linearization process, while
we take here the analysis one step further in the context of an iter-
ative loop. Furthermore, they only considered a specific form for the
linearization, namely of fixed point-type, while we allow for a wider
choice, including Newton–Raphson methods. We consider an adap-
tive loop in which at each step, a fixed mesh is considered and the
nonlinear solver is iterated until the linearization error estimate is
brought below the discretization error estimate; then, the mesh is
adaptively refined and the loop is advanced. In this work, we will
not tackle the delicate issue of proving the convergence of the above
adaptive algorithm. We will also assume that at each iterate of the
nonlinear solver, a well-posed problem is obtained. This property is
by no means granted in general; it amounts, for the p-Laplacian, to
assume, as mentioned before in [9], that the gradient norm of the
approximate solution is positive everywhere in the domain. We
mention that in our numerical experiments, all the discrete prob-
lems were indeed found to be well-posed.

This paper is organized as follows. Section 2 describes the set-
ting for the nonlinear problem together with its discretization
and linearization. Section 3 is devoted to the derivation of the guar-
anteed error upper bounds, while Section 4 is concerned with the
efficiency of the estimators. Section 5 presents two possible ap-
proaches to reconstruct the flux th in the context of piecewise af-
fine, continuous finite elements. Section 6 contains the numerical
results. Finally, Appendix A collects various auxiliary lemmas.
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