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A B S T R A C T

Macroscopic friction coefficients observed in experiments are the result of various types of complex multiscale
interactions between sliding surfaces. Therefore, there are several ways to modify them depending on the physical
phenomena involved. Recently, it has been demonstrated that surface structure, e.g. artificial patterning, can be
used to tune frictional properties. In this paper, we show how the global friction coefficients can also be
manipulated using composite surfaces with varying roughness or stiffness values, i.e. by combining geometrical
features with the modification of local friction coefficients or stiffnesses. We show that a remarkable reduction of
static friction can be achieved by introducing hierarchical arrangements of varying local roughness values, or by
introducing controlled material stiffness variations.

1. Introduction

The constitutive laws of friction appear to be very simple at the
macroscopic scale, indeed they were already formulated by Leonardo da
Vinci, and later introduced in the context of classical mechanics with the
so called Amonton's-Coulomb (AC) law: the friction force is proportional
to the applied normal load and is independent of the apparent contact
surface and of the sliding velocity [1]. The proportionality constants are
called friction coefficients, which are different in the static and the dy-
namic sliding phase. Although some violations have been observed [2],
this is a good approximate description of the macroscopic frictional force
between two solid sliding surfaces [3].

However, the origin of this behaviour turns out to be much more
complicated, since friction coefficients are effective values, enclosing all
the interactions occurring from atomic length scales, involving “dry” or
chemical adhesion forces, to macroscopic scales, involving forces due to
solid deformation and surface roughness. Moreover, friction coefficients
are not a specific feature of the specific material, rather they are the result
of the complex interplay between the contact surfaces occurring at
various length scales in that material and involving different basic
physical mechanisms [4,5]. Thus, in order to modify the macroscopic
emergent behaviour, one can intervene on the single mechanisms
involved. For example, it is possible to modify the interactions at the

microscopic level by means of lubrication between surfaces, so that solid-
solid molecular forces are switched to liquid-solid interactions and fric-
tion is reduced. At the macroscopic level, friction can be reduced by
means of smoothing or polishing procedures, in order to remove surface
asperities hindering relative motion. Thus, problems related to friction,
which is a complex multiscale phenomenon, can be addressed with
different methods, from a practical and a theoretical point of view [6].

Another way to modify frictional properties is to manufacture sliding
surfaces with artificial patterning, frommicrometric to millimetric scales,
e.g. grooves and pawls perpendicular to the direction of motion. The
effects of these structures have been studied both numerically [7] and
experimentally [8,9], and recently their hierarchical arrangement has
also been investigated by means of numerical simulations [10]: results
show that by changing the architecture of the contact surface only, the
global static friction coefficients can be tuned without changing the
chemical or physical properties of the material. This is because by
exploiting patterning it is possible to modify mesoscopic features, i.e. the
effective contact area and the stress concentrations occurring in the static
phase, providing a way to modify macroscopic friction coefficients.

In this paper, we show that this approach can be combined with the
local variation of friction coefficients, corresponding to a local change of
material properties or of local surface roughness, in order to reduce static
friction. We consider only roughness modifications occurring at the
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mesoscopic scale, using a statistical description based on a one-
dimensional version of the spring-block model [11]. This approach al-
lows to address the problem of friction in composite materials, which are
widely used in practical applications [12–16] but whose frictional
behaviour is still scarcely studied from a theoretical and numerical point
of view. Moreover, we consider local hierarchical arrangements of sur-
face properties on different characteristic length scales. This allows us to
highlight the main mechanisms taking place in the presence of different
length scales, which could be exploited to design artificial surfaces with
specific tribologic properties.

Finally, we also consider a composite material with varying elastic
properties, i.e. in which the elastic modulus is characterized by a linear
grading. This can be found for example in functionally-graded composite
materials, i.e. inhomogeneous materials whose physical properties are
designed to vary stepwise or continuously [17,18] to manipulate global
properties such as elasticity, thermal conductivity, hardness etc. These
types of composite materials are widely adopted in practical applications,
so that it is useful to investigate their frictional properties. A linear
grading of elastic properties can be also combined with a local change of
surface roughness in order to exploit both effects.

2. Spring-block model

In order to study the effect of varying local friction coefficients on a
surface, we adopt the one-dimensional spring-block model [19,20],
which is schematically represented in Fig. 1: the material is discretized in
N blocks of mass m along the direction of motion, connected by means of
springs of stiffness Kint and rest length lx. Each block is also attached by
means of shear springs of stiffness Ks to a slider which is moving at
constant velocity v. A normal pressure P is uniformly applied on the
surface, so that the same normal pressure is acting on all blocks. A viscous
force with damping coefficient γ in the underdamped regime is also
added, in order to eliminate artificial block oscillations. Despite its
simplicity, this model has already been used in many studies to investi-
gate the frictional properties of elastic materials [11,21–30].

The blocks, representing a region of characteristic length lx on the
surface of the material, are in contact with an infinitely rigid plane.
Friction at the block scale is introduced through the classical AC friction
force: each block is characterized by microscopic static and dynamic
friction coefficients, respectively μsi, μdi, extracted from a Gaussian sta-
tistical distribution. In the following, we will drop the subscripts s or d of
the friction coefficients every time the considerations apply to both the
coefficients.

This distribution does not necessarily represent the statistics of the
contact points due to the surface roughness, rather it is a distribution of
force thresholds for an elementary surface unit, used to provide an
effective statistical description of the AC friction force at larger length
scales than those relative to micro-scale phenomena. Though others can
also be appropriate, the Gaussian distribution is a conventional
choice that can be used to approximate any peaked distribution with
parameters that are easily associated with the mean value and the stan-
dard deviation. The probability distribution is pðμiÞ ¼ ð ffiffiffiffiffiffi

2π
p

σÞ�1exp½�
ðμi � ðμÞmÞ2=ð2σ2Þ�, where ðμÞm is the average microscopic coefficient

and σ is its standard deviation. This distribution is adopted for both the
coefficients but with different parameters.

The global friction coefficients, obtained from the sum of all the
friction forces on the blocks, will be denoted withM, i.e. ðμÞM . The global
dynamic friction coefficient is calculated from the time average during
the dynamic phase. The model does not include any wear phenomena or
other long term effects occurring after the onset of macroscopic sliding.
Results regarding the dynamic friction are to be intended within the
limits of this approximation. The global static friction coefficient is
calculated from the maximum of the total friction force during the initial
static phase, identified using the absolute maximum of the number of
moving blocks, representing a macroscopic sliding event. In most cases,
this coincides with the maximum of the total friction force over time.

In summary, the forces acting of each block are: the shear elastic force
due to the slider uniform motion, Fs ¼ Ks⋅ðvtþ li� xiÞ, where xi is the
position of the block i and li is its starting rest position; the internal elastic
restoring force between blocks Fint ¼ Kint ⋅ðxiþ1þ xi�1� 2xiÞ; the normal
force Fn ¼ P lxly and the viscous force Fd ¼�mγ _xi; finally, the AC friction
force Ffr : if the block i is at rest, the friction force is equal and opposite to
the resulting driving force, i.e. Ffr ¼ � ðFsþ FintÞ up to the threshold Ffr ¼
μsi Fn. When this limit is exceeded, a constant dynamic friction force
opposes the motion, i.e. Ffr ¼ � μdi Fn. Thus, the equation of the motion
for the block i along the sliding direction x is obtained fromNewton's law:
m€xi ¼ Fintþ Fs� mγ _xiþ Ffr .

The friction coefficients are fixed at the beginning of the simulation
by extracting their values from the chosen distribution with a pseudo-
random number generator. We have adopted a generator based on the
Mersenne-Twister algorithm [31]. The overall system of ordinary dif-
ferential equations can be solved numerically with a fourth-order Runge-
Kutta algorithm with constant time step integration [32]. Since the
friction coefficients of the blocks are assigned after generating them with
a pseudo-random number generator from the chosen distribution at each
run, the final result of any observable consists on an average of various
repetitions of the simulation. Usually, we assume an elementary inte-
gration time step h ¼ 10�4 ms and we repeat the simulation about twenty
times for statistical reliability.

The values of the parameters can be assigned by relating them to the
macroscopic properties of the material, such as the Young's modulus E,
the shear modulus G, the mass density ρ, the transversal dimensions ly , lz
and the total length Lx ¼ Nlx. The mass is m ¼ ρ lxly lz, the stiffnesses are
Kint ¼ E⋅ðN� 1Þly lz=Lx and Ks ¼ G⋅ly lx=lz. The stiffnesses are assumed
constant for all the blocks, also in presence of different roughnesses,
unless grading is explicitly introduced (see Section 6). This choice is
made to reduce the number of free parameters of the model, but other
formulations are equally valid (e.g. with constant friction coefficients and
a statistical dispersion on the stiffnesses) and would not significantly
affect the qualitative behaviour. We choose the global shear modulus as
G ¼ 5MPa, the Young's modulus E ¼ 15MPa, the mass density ρ ¼ 1:2 g/
cm3, which are typical values for a rubber-like material with Poisson
ratio ν ¼ 0:5.

The length lx is an arbitrary parameter representing the elementary
discretization of the material and, consequently, the smallest surface
feature that can be described in the model. We have fixed lx ¼ 0:05 mm,

Fig. 1. Schematic of the spring-block model with the notation used in the text.
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