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A B S T R A C T

Modeling adhesion between two contacting surfaces plays a vital role in nano-tribology. However, providing
analytical models, although desirable, is mostly impossible, in particular for complex geometries. Therefore,
much attention has to be paid to numerical modeling of this phenomenon. Based on the adhesive stress
description of the Maugis-Dugdale model of adhesion, which is credible over a broad range of engineering
applications, an extended Conjugate Gradient Method (CGM) has been developed for adhesive contact
problems. To examine the accuracy of the proposed method, the common case of the adhesive contact of a
rigid sphere on an elastic half-space is investigated. To further evaluate the accuracy of this method, the
adhesive contact of a rigid sphere over a wavy elastic half-space is also studied for different combinations of the
amplitude and wavelength. There is good agreement between the analytical solution and the values predicted by
the proposed method in the force-approach curves. Moreover, the calculation of pull-off force at a bisinusoidal
interface between two surfaces is carried out for various cases to study the effects of different influential
parameters including work of adhesion, elastic modulus, radius curvature at a crest, and the wavelength ratio. A
curve is fitted on the calculated pull-off force in order to express it as an analytical relation. Similar to the JKR
and DMT expressions for the pull-off force of a rigid ball on an elastic half-plane, the fitted curve is not affected
by the elastic modulus and is linearly dependent on the radius of curvature and the work of adhesion. In
addition, a power law governs the relation between pull-off force and the wavelength ratio. In the end, it is
shown that roughness can either increase or decrease the adhesive force at a rough interface depending on the
degree of the roughness.

1. Introduction

Adhesion plays a significant role in several technological fields and
serves as one of the main reliability issues while dealing with smooth
surfaces in contact under relatively low normal loads such as the case of
micro/nano devices [1,2]. The early research on adhesion in contact
mechanics was done by Bradley who studied the adhesive contact of
rigid spheres [3]. Later on, two opposing classical theories of adhesion,
JKR [4], and DMT [5], for single spherical elastic contacts were
presented. Although these two models take different approaches and
make significantly different assumptions, they are both true. It was
shown by Tabor that these two models are the two opposite extreme
limits of a single theory characterized by the Tabor parameter [6]:
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where R Δγ E z, , *, 0 are the radius of the sphere, work of adhesion, the
effective elastic modulus, and the equilibrium separation, ranging from
0.2 nm to 0.4 nm. The JKR model is valid for large values of the Tabor
parameter, as in the case of large and compliant contacts. The DMT
model, however, is suitable for low values of this parameter, as for
small and stiff contacts. Following these two models, Muller et al.
developed a numerical solution to the adhesion interaction by integrat-
ing the Lennard-Jones potential and characterized the transition from
DMT to JKR by adjusting the Tabor parameter [7]. Subsequently,
Maugis provided a solution to this contact problem through assuming
the contribution of adhesion inside and outside the contact area, by
means of a Dugdale approximation and is known as Maugis-Dugdale
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(MD) model [8]. He defined an adhesive parameter which is equivalent
to the Tabor parameter as:
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in which σ0 is the maximum attractive pressure of the Lennard-Jones
potential. Based on the MD model, Johnson and Greenwood con-
structed an adhesion map for the contact of elastic spheres [9,10].

Although the mentioned analytical models provide exact solutions
to the adhesion problem, they are limited to simple and smooth
geometries. Thus, researchers have resorted to numerical approaches
for surfaces with a more complex geometry [11–13]. Several authors
have attempted to numerically evaluate the adhesion between two
rough surfaces through multi-asperity and finite element approaches.
In multi-asperity models, the surface is described merely in terms of
the summit geometry and the rest of the surface is discarded [14–16].
As the main limitation of this model, next to the simplified summit
geometry, is the assumption of a Gaussian distribution of roughness
height, which is not valid for many engineering applications, different
height distributions have been implemented, all of which still have the
limitation to a specific application [16–19]. Finite element models for
adhesive contact problems, incorporating the Lennard-Jones potential
into the framework of nonlinear continuum mechanics, have also been
developed [20,21].

The roughness of a surface could be described by means of surface
models, such as fractals and Fourier transforms [22–25]. In these
cases, numerical simulation of an adhesive contact has been considered
while taking into account the regenerated topography of the contacting
surfaces and not the original topography as it is measured. Here, the
measured topography of a surface can be different from the roughness
details regenerated or approximated by stochastic parameters.
Consequently, since the adhesion force is a function of the exact local
distance between the asperities of the two contacting surfaces, chan-
ging this distance influences the corresponding local adhesive force,
and thus, deviation in the adhesive behavior is expected. Therefore, the
core purpose of the current study is to develop a numerical adhesive
contact solver between two elastic surfaces without any assumption on
or restriction to the topography of the surfaces. Restricting ourselves to
this goal, the Conjugate Gradient Method (CGM) is considered. CGM is
a fast and accurate numerical algorithm typically implemented for a
system of linear equations and is often used in an iterative scheme [26].
Polonsky and Keer first implemented this method for non-adhesive
normal contact problems [27]. Ever since, this method has been
extensively exploited for various non-adhesive contact problems in
order to determine the normal and tangential contact stresses and
contact area [28–33].

In the present study, the CGM is extended to include a Dugdale
approximation, similar to MD model of adhesion, for the adhesive
stress. In this way, it is used for the adhesive contact analysis between
two elastic bodies with a general complex surface geometry.

2. Adhesive parameters

Maugis represented the surface force in terms of a Dugdale cohesive
zone and stated that adhesion is present up to a specific value of the
separation between the two contacting bodies, named h0. Within this
separation, the attractive pressure of σ0, is applied such that [8]
(Fig. 1):

Δγ σ h= 0 0 (3)

This results in h z z= 9 3 /16 = 0.9740 0 0. Based on the definition of
the MD model, the pressure inside the contact region is the super-
position of the positive Hertzian pressure of radius a and the negative
adhesive pressure. Outside the contact region, the attractive pressure is
constant over a ring of inner and outer radii of a and c, in which:

⎧⎨⎩φ at r a
h at r c= 0 =

=0 (4)

where φ is the separation. The Dugdale stress, σ− 0, and the maximum
separation, h0, are the two adhesive parameters that will be used in the
proposed algorithm for the adhesive normal contact between two
bodies.

3. Problem definition

When two rough surfaces are brought into contact, the generated
normal stress (pressure) deforms the surfaces. The composite deforma-
tion of the two surfaces, u x y( , ) due to the applied pressure,P x y( , ) over
the region Ω is given by:

∫u x y k x ζ y η P ζ η dζdη( , ) = ( − , − ) ( , )
Ω (5)

where x and y are the spatial coordinates and k x y( , ) is the Boussinesq
kernel function and is expressed as [34]:
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in which E ν i, , = 1, 2i i are the elastic moduli and Poisson ratios of the
two contacting surfaces. If the separation between these two surfaces
before and after the deformation are denoted by h x y( , ) and g x y( , ), they
can be related to the deformation u x y( , ) as:

g x y u x y h x y δ( , ) = ( , ) + ( , ) − (7)

where δ is the rigid approach of the two surfaces (Fig. 2). The non-
adhesive contact problem necessitates the pressure to be positive at
contacting areas, where there is no separation between the two surfaces
(where g x y( , ) = 0). On the other hand, at separate areas (where
g x y( , ) > 0), the pressure must be zero. Moreover, the pressure
distribution must balance the applied normal load, F0. In other words:

∫

P x y at g x y
P x y at g x y

P x y dx dy F

( , ) > 0 ( , ) = 0
( , ) = 0 ( , ) > 0

( , ) =
Ω

0
(8)

The adhesive contact problem is, nevertheless, different from the
definition by Eq. (8). For an adhesive contact problem, there is a
negative stress between separated areas described by the Lennard-
Jones potential as an explicit function of the local separation. As stated
in the previous section, the MD model of adhesion assumes this
dependence to be a step function of the local separation (by means of
a Dugdale approximation of the Lennard-Jones expression). Based on
this description, the negative stress due to adhesion at separated areas

Fig. 1. Dugdale approximation (red line) of Lennard-Jones potential (blue line). (For
interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article).
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