Tribology International 114 (2017) 358—-364

journal homepage: www.elsevier.com/locate/triboint

Contents lists available at ScienceDirect

TRIBOLOGY
INTERNATIONAL

Tribology International

Surface normal deformation in elastic quarter-space

W. Wang?, L. Guo”, P.L. Wong"", Z.M. Zhang"

@ CrossMark

2 School of Mechatronics Engineering and Automation, Shanghai University, Shanghai, China
> Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Hong Kong, China

ARTICLE INFO ABSTRACT

Keywords:

Elastic quarter space
Surface deformation
Flexibility matrix

An efficient and explicit solution for the surface deformation of quarter-space under normal load is developed
using the concept of flexibility matrix, which serves like springs in response to loads. Quarter-space is
characterized by the unbounded side surface, such as in roller bearings and gears. The solution method is
verified using a typical case. The edge effect on surface deformation under three load types namely, Hertzian

point, flat cylindrical punch and Hertzian line, are evaluated. The effect can be considerable if the applied load is
close to edge. The flexibility matrix is constant for a given case. Hence, the solution method is highly efficient,
and particularly suitable for quarter-space problems which require iterative calculations, such as elasto-
hydrodynamic lubrication analyses.

1. Introduction

Acquiring the elastic deformation of contact surfaces is important
in engineering. The solution process also needs to be fast and efficient
for certain applications that require iterative calculations for the
surface deformation, such as the analysis of tribo-pairs operating
under the elasto-hydrodynamic lubrication (EHL) regime. Some com-
mon engineering components, such as roller bearings, gears and cam-
followers, are characterized by the existence of free edge surfaces.
Contact problems of these components are, in fact, more accurately
modeled by elastic quarter-space (Fig. 1(a)). Nevertheless, the available
solutions of elastic quarter-space are very complex, such that the elastic
half-space model (semi-infinite body) is widely adopted for calculating
contact stress and deformation in practical mechanical systems, such
as those aforementioned applications, for their contact solutions are
readily obtained with Bussinessq or Love formulae [1,2]. The assump-
tion of semi-infinite body model is obviously not satisfied in these
practical cases. For example, in the contact of gears and roller bearings,
the length of the gear tooth and bearing roller are finite. Thus, the effect
of free edge surfaces cannot be ignored and these components cannot
be taken as semi-infinite bodies. The elastic quarter-space model is,
indeed, more appropriate.

Hetenyi [3] tackled the quarter-space problem with the concept of
iteratively overlapping mutually orthogonal half-spaces with mirrored
load pairs till fulfilling the boundary conditions of the quarter-space.
Keer et al. [4] utilized Hetenyi's overlapping half-space idea and
derived two integral equations to describe the quarter-space problem.
They solved the equations with Fourier transform. Nevertheless, their
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method can only be applied to cases where the load can be Fourier-
transformed. Later on, Hanson and Keer [5] overcame this limitation
with a direct numerical solution of the quarter-space by solving two
dimensional integral equations. Thus, any load type can be considered.
The difference in the stress obtained with quarter-space and half-space
models was studied. As pointed out in [5], the magnitude and position
of the maximum stress calculated with quarter-space and half-space
vary, especially when the load is located in the immediate neighbor-
hood of the free end. Guilbault [6] made use of a correction factor
which multiplies the Hetenyi's mirrored loads to simultaneously
correct the influence of stresses on elastic deformation of a quarter-
space, which provides a much faster solution than a complete Hetenyi
process. This correction factor method was applied by Najjari and
Guilbault [7] to investigate the edge effect in EHL analysis of roller
bearings. Nevertheless, this method gives only approximate solutions.
The present authors [8] have recently obtained the limit of Hetenyi's
iteration with a matrix method and developed an explicit solution to
the stress field of quarter-space problems. The aforementioned meth-
ods are all based on the overlapping half-space concept of Hetenyi.
Apart from these, Bower et al. [9] adopted finite element method
(FEM) to analyze the ratcheting limit of rail's plastic deformation.
Hecker and Romanov [10] applied Mellin transform to solve the stress
distribution of quarter-space. Ritz's method was also applied by
Guenfoud et al. [11] to obtain the displacement solution of quarter-
space.

There is another perspective of the contact problem of quarter-
space by considering its contact with a rigid body. Gerber [12] was the
first to study a contact between a rigid body and an elastic quarter-
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Fig. 1. Quarter-space solutions equivalent to overlapping half-spaces.

space. He obtained the stress distribution in a quarter-space which is
pressed by a rectangular punch. Keer et al. [13] studied a quarter-space
loaded with a rigid cylindrical indenter by integral transform techni-
ques. Hanson and Keer [14] solved the contact stresses between a
spherical indenter and a quarter-space. Wang et al. [15] studied the
problem of a quarter-space in contact with a rigid sphere using
equivalent inclusion method. Zhang et al. [16,17] analyzed the contact
of a rigid roller and a finite-length elastic body. To include the effect of
the free edge surfaces of the elastic body, they applied the method of
Zhang et al. [8] in the study. However, the shear stresses on a free end
surface as induced by the mirrored loads on the plane of the other end
surface cannot be eliminated, i.e. it does not fulfill the zero stress
boundary condition of the free surface.

The elastic deformation of quarter-spaces is needed in the solution
of many engineering problems, such as rail/wheel contacts [14] and
EHL analyses of roller contacts [18—-20]. The analyses of these
application examples require iterative calculations. Thus, it requires
not only accurate but also efficient solution for surface deformation of
elastic quarter-space. In this paper, the solution of surface deformation
of a quarter-space is developed resembling a matrix of springs. The
deformation of a spring is obtained by simply dividing the load over its
stiffness, or multiplying the load with its flexibility. If such a simple
process can be implemented into the calculation loops of the above
examples, the solution process would be significantly simplified and
shortened. The complete calculation times can thus be much lower,
especially if a great many times of iteration is needed. In order to
realize this, a characteristic property of elastic quarter-space concern-
ing its stiffness or flexibility must be known prior to entering the loop
of calculation. This characteristic property must be independent of the
load, and derived without the knowledge of the current load. The
present paper achieves this aim by extending our recently proposed
technique [8] for quarter-space solutions, such that an explicit form of
the flexibility matrix of the elastic quarter-space is derived. This
flexibility matrix is independent of the load, so that it can be used in
every loop of the iteration process. The elastic surface deformation can
be immediately obtained by simply multiplying this matrix with the
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current load distribution. The theoretical derivation of the flexibility
matrix for the elastic surface deformation with the quarter-space model
is presented. The solution method is also validated through a special
case study. The difference in the surface normal deformation calculated
with quarter-space and half-space models are not yet investigated
comprehensively. Therefore, the results of the surface normal deforma-
tion of quarter- and half-space models under different typical loads are
also presented and discussed.

2. Solution of surface normal deformation with quarter-
space model

2.1. Derivation of flexibility matrix

A quarter-space problem with a distribution load P on the top
surface as shown in Fig. 1(a) can be solved by making use of the
solutions of two mutually orthogonal half-spaces as shown in Fig. 1(b),
which is based on the overlapping half-space idea of Hetenyi [3]. To
solve a quarter-space problem with matrix formulation [8], the
horizontal and vertical surfaces of the quarter-space are discretized
with rectangular meshes of different sizes. Fig. 2(a) shows schemati-
cally the mesh pattern on the top surface. The region near the free edge
surface is discretized with finer meshes in order to enhance the
accuracy of the deformation results close to the free edge. The solution
of Fig. 1(a) is obtained by superimposing the half-space solutions of
load-pairs: P,,P, and P,, P, (P, and P, are mirror loads of P, and P,,
respectively). Making use the stress boundary conditions of the original
quarter-space (Fig. 1(a)): P on the top surface and zero stress on the
vertical side surface, explicit solutions of the equivalent load B, and P,
of the half-spaces (Fig. 1(b)) can be readily obtained by [8],

B,=A.P (1)
P,=B.P 2

The Appendix shows how the two coefficient matrices A and B can
be calculated. All pressure distributions are in matrix format as,
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Fig. 2. (a) Mesh pattern and (b) the i patch on top surface.
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